
Autonomous Industrial Mobile
Manipulator in Smart Production

- Robot Integration -

P5 Project Report

16GR561

Aalborg University
Robotics

Copyright c© Aalborg University 2016

Robotics

Aalborg University

http://www.aau.dk

Title:
Autonomous Industrial Mobile Manip-
ulator in Smart Production

Theme:
Robot Integration

Project Period:
5th Semester Fall 2016

Project Group:
16gr561

Participant(s):
Biranavan Pulendralingam
David Cerny
Emil Blixt Hansen
Rasmus Andersen
Steffen Madsen

Supervisor(s):
Simon Bøgh
Dimitris Chrysostomou

Copies: 3

Page Numbers: 84

Date of Completion:
January 20, 2017

Abstract:

The motivation for this project is to
bring flexibility and automation to
part feeding in an Industry 4.0 con-
text. This is achieved through a devel-
opment of a new version of the Little
Helper (LH6), which is a series of Au-
tonomous Industrial Mobile Manipu-
lators (AIMM), developed by Aalborg
University. LH6 consists of a MiR100
as its mobile platform and a UR5 as its
collaborative manipulator. In order to
integrate these two standalone robots,
an aluminium frame is created and
a ROS-based program, named Skill-
Based System (SBS), is used and ex-
panded to support mobile robots. A
specific part feeding challenge is cho-
sen in an Industry 4.0 production line
demo, assembling mobile phone dum-
mies, which concerns a tray, contain-
ing 12 PCB’s for smartphones. LH6
would get a signal from a PLC, con-
trolling the tray conveyor, and then
drive into position. LH6 then takes out
the empty tray and puts in a full one
afterwards. Certain difficulties were
encountered regarding MiR100’s nav-
igation system and a bug in a TCP
server, which combined brought down
the success rate to approx. 64%. How-
ever, with the bug solved, the solution
shows potential in an Industry 4.0 in-
tegration.

http://www.aau.dk

The content of this report is freely available.

Contents

Preface xi

1 Introduction 1
1.1 Project Background . 1
1.2 Little Helper . 2
1.3 Industry 4.0 . 3

1.3.1 FESTO Cyper-physical Factory 3
1.4 Initial Problem Statement . 4

2 Challenges and Integration Proposals 5
2.1 Part Feeding Challenges . 5
2.2 FESTO CP Factory Use Case . 6
2.3 Previous Little Helpers . 8
2.4 Integration Challenges . 10

2.4.1 Assembly of LH6 Components 10
2.4.2 Battery . 11
2.4.3 Communication . 11
2.4.4 Mapping and Navigation . 12
2.4.5 Safety . 13
2.4.6 Part Feeding . 13
2.4.7 User-Friendliness . 13

2.5 Skill Based System . 13
2.5.1 Tasks . 14
2.5.2 Skills . 14
2.5.3 Device Primitives . 14
2.5.4 Concept of SBS . 15

3 Problem Formulation 17
3.1 Solution Proposal . 17

vii

viii Contents

4 Requirements Specifications 19
4.1 Design Requirements . 19

4.1.1 Software . 19
4.1.2 Hardware . 19
4.1.3 Safety . 20
4.1.4 Operation . 21

4.2 Delimitations . 21
4.2.1 Final Requirements . 24

5 Solution Proposal for Delimited Case 25

6 LH6 Architecture 27
6.1 Mobile platform - MiR100 . 27

6.1.1 MiR100 Driver . 29
6.2 Manipulator - UR5 . 31
6.3 Gripper - Robotiq 3-Finger . 33
6.4 Design of LH6 Mounting . 33
6.5 Sensor - 3D Camera Calibration . 34
6.6 Network and Electric Circuit of LH6 37

6.6.1 Network Setup . 37
6.6.2 Electric Circuit . 38

7 Integration 41
7.1 SBS Integration of DriveTo Skill . 43
7.2 SBS Integration of 3D Camera Calibration 45
7.3 Integration with FESTO CP Factory 46

7.3.1 Part Feeding Automation . 46
7.3.2 PLC-LH6 Communication . 48

7.4 Summary . 51

8 Experiments and Results 53
8.1 Prototype and Construction . 54

8.1.1 Early Prototype of LH6 . 54
8.1.2 First CAD Model . 54
8.1.3 Second CAD Model . 55

8.2 TCP Communication Experiments . 56
8.2.1 Python TCP Server . 56
8.2.2 Integration into ROS Node . 57
8.2.3 Communication with SBS . 58

8.3 3D Camera Calibration Experiment 58
8.3.1 Calibration vs. Initial Precision 58

8.4 MiR100 Driver . 61

Contents ix

8.4.1 Control with Arrow Keys . 62
8.4.2 Drive to Position . 62
8.4.3 Create Position . 63
8.4.4 Integration Into a ROS Node 64
8.4.5 SBS Mobile Platform . 64
8.4.6 Drive To Skill . 64

8.5 Final Test . 65
8.5.1 Test Setup . 65
8.5.2 Test Results . 67

9 Discussion 71

10 Future Work 73

11 Conclusion 75

Bibliography 77

A Budget 79

B Setup Guide for Running SBS and LH6 83

Preface

This report documents a project made by 5th semester students of Robotics B.Sc.
at Aalborg University. The project was carried out during the time from Septem-
ber to December 2016. The complexity of technical and programming language
is on a level, that is expected of students on this education program to use and
understand. The topic of this project is integration of an autonomous mobile ma-
nipulator in a smart production.

A special thanks to Simon Bøgh and Dimitris Chrysostomou, the project super-
visors, who helped the authors and encouraged them in the process of writing the
report and developing the solution. A thanks also goes to Casper Schou and Ras-
mus Skovgaard Andersen for a significant assistance with certain programming
challenges, rewiring of an assembly module or robots, and design of an electric
circuit.

Reader’s Guide

This report uses the modified Chicago style of referencing. All used sources can
be found in the end of the report. Source references are written in the end of para-
graphs in brackets and in a specific format: (author’s name, year). References to
figures are written in the same way, just in the end of figure’s captions. If a figure
is missing a reference, it means that it has been created by authors themselves.
The terms smart production and Industry 4.0 are used interchangeably throughout
the report.
Appendices can be found in the end of the report, containing additional informa-
tion regarding the project. All additional material can be found in a DropBox folder
(https://www.dropbox.com/sh/easiqhiqohkqfq7/AABjUeWcLpskfj-iLzxyMaX-a?dl=
0 or in Figure 1) which contains:

• SBS and ROS drivers.

• CodeSys .project file with used PLC program.

• Final test video footage.

xi

https://www.dropbox.com/sh/easiqhiqohkqfq7/AABjUeWcLpskfj-iLzxyMaX-a?dl=0
https://www.dropbox.com/sh/easiqhiqohkqfq7/AABjUeWcLpskfj-iLzxyMaX-a?dl=0

xii Preface

Figure 1: Link to project repository.

Biranavan Pulendralingam
<bpulen14@student.aau.dk>

David Cerny
<dcerny14@student.aau.dk>

Emil Blixt Hansen
<ebha14@student.aau.dk>

Rasmus Andersen
<rean14@student.aau.dk>

Steffen Madsen
<smad14@student.aau.dk>

Chapter 1

Introduction

The purpose of this project is to create an automated solution for part feeding
challenges in an Industry 4.0 context. This is achieved by designing a version
of the series of autonomous industrial mobile manipulators (AIMM) called Little
Helpers and integrating it into Aalborg University’s Industry 4.0 demo (referred to
as the FESTO Cyper-Physical Factory, FESTO CP Factory). This chapter consists of
an introduction to the background of the project, a short description of the Little
Helper robots, Industry 4.0, FESTO CP Factory and the initial problem statement.

1.1 Project Background

Today many manufacturing companies are experiencing an unpredictable and dy-
namic production environment. This is among other, due to the following condi-
tions:

1. Increased competition from low labour countries.

2. Increased customization.

3. Low product life cycles, due to ongoing development of emerging technolo-
gies.

4. Uncertain and changing markets.

5. Increased requirements for health and environment regulations.

These conditions are testing the manufacturing companies’ ability to efficiently
adapt their production systems accordingly, and thereby their ability to stay com-
petitive in a dynamic and globalized market. If a company fails to adapt to the
conditions, it will have consequences for their competitiveness, and might be a
threat to the survival of the company. (Madsen 2016)

1

2 Chapter 1. Introduction

To adapt to the conditions sufficiently, manufacturing companies should design
their production systems around flexibility. The traditional hard automation can,
because of dedicated specialised production equipment, be efficient, but lacks
when it comes to flexibility and product variety. Alternatively, manual labour
brings flexibility and product variation to a production, but have a low efficiency
and is often not economically viable for high wage countries as Denmark. There-
fore, to achieve a greater flexibility together with an efficient automated produc-
tion, there is a need for a general shift in how to design a production system,
from hard automation involving mass production, to a flexible automation (here
referred to as soft automation) involving a flexible and reprogrammable automa-
tion enabling an ideal batch size of 1. The aim of soft automation and this project
is to achieve flexibility as well as efficiency in a production system. (Bøgh et al.
2012) (Kalpakjian and Schmid 2014)

1.2 Little Helper

In a series of autonomous mobile manipulators designed by Aalborg University,
consisting of five robots, called Little Helper (LH), Aalborg University gives their
idea of an element in a flexible production system (See Figure 1.1). The aim of the
LH series is to achieve flexibility and efficiency through a high degree of automa-
tion, using an Autonomous Industrial Mobile Manipulator (AIMM). By the use of
a mobile platform the LH robots can navigate autonomously in uncertain human
environments and can by an integration of a robot manipulator handle a variety
of tasks. Furthermore, some previous LH’s use a system called Skill Based System
(SBS), which achieves fast robot reprogramming for non-robot experts.

Figure 1.1: Illustrates LH3 consisting of a KUKA LWR manipulator, integrated together with at
Neobotix mobile platform. (Carøe, Hvilshøj, and Schou 2012)

1.3. Industry 4.0 3

1.3 Industry 4.0

The industrial world is in the midst of a fourth industrial revolution. A new digital
industrial technology is emerged, called Industry 4.0, which is a combination of
new technologies within internet, robotics and machines. The fundamental idea of
Industry 4.0 consists of nine technology advances, including autonomous robots,
simulation, the industrial internet of things and cloud computing. In Industry 4.0
sensors, robots and IT-systems, are connected by an overall system called a cyper
physical system. In this systems the production elements (e.g sensors and robots)
can communicate through simple internet protocols. Industry 4.0 achieves to in-
crease flexibility and efficiency in a production system, by gathering and analysing
data across machines, sensors, etc. (Rüssmann et al. 2015)

1.3.1 FESTO Cyper-physical Factory

Aalborg University’s idea of an Industry 4.0 implementation is a factory demo
called Festo CP Factory (see Figure 8.5). The factory is located at Aalborg Univer-
sity, and is referred to as smart production factory. The FESTO CP Factory is built
up by modules. Each of these modules is independent, meaning that they can be
separated and combined in new ways with minimal effort. The smart production
factory has the purpose of showcasing the customisability and flexibility of Indus-
try 4.0, in this case assembly of smart-phone dummies. The phones in the factory
will be able to have different customised features, without changing the produc-
tion system. This is possible as all the sensors, Programmable Logic Controllers
(PLC’s), conveyors etc. in the factory are connected through a cypher-physical sys-
tem.

Figure 1.2: FESTO CP Factory at Aalborg University.

4 Chapter 1. Introduction

The production line consists of eight modules each having two conveyor belts with
their own RFID readers. Each conveyor belt is independent and can run in both di-
rections. Carriers with individual RFID tags are moving around on the conveyors.
When an order is sent to the system through a Manufacturing Execution System
(MES), the given order is connected to its own carrier and RFID tag. By the RFID
tag readers the factory is able to read the customised order, and execute the sys-
tem with respect to the order. In this way it is possible to adapt the production line
according to variables chosen by the customer.

1.4 Initial Problem Statement

The focus of this project is to automate part feeding challenges in an Industry
4.0 context. The aim of this project is to create a new and the sixth version of
Aalborg University’s series of LH robots (LH6) and integrate it as a part of FESTO
CP Factory to solve part feeding challenges, and thus adding a new element of
flexibility to the FESTO CP Factory.

Chapter 2

Challenges and Integration Propos-
als

This chapter contains an analysis of context and resources of this project, which
yields challenges that need to be considered in proposing a solution and setting
up requirement specifications (see Chapter 4).

2.1 Part Feeding Challenges

As mentioned in Chapter 1, this project is focused on part feeding challenges in a
smart production factory. It is then important to identify what kind of challenges
one faces in part feeding tasks in general.

Every kind of production line needs to have a system, where assembly parts, or
raw materials enter the line, no matter if it is a smart production, or mass produc-
tion. This makes part feeding one of the essential processes in a production line.

Part feeding tasks can be carried out either manually, or they can be automated.
There may be different types of part feeding challenges; however, they still share
common operations such as:

• Move to production line.

• Pick certain part.

• Place part in production line.

• Move away from production line.

As mentioned in Chapter 1, manual part feeding may lack efficiency. However,
it cannot be surpassed in flexibility and adaptation, since a human worker can

5

6 Chapter 2. Challenges and Integration Proposals

be told what to do, is able to critically think about what he/she is doing, predict
and corrects errors. Alternatively, hard automation is usually effective but lacks
flexibility, since any alteration of such a production line can be complicated and
expensive.

In case of soft automation, flexibility is much higher. The possibility to have vari-
ety in the production line, or customise the product is one of the main focuses of
soft automation. That is because a soft automated production line is equipped by
reprogrammable computer-controlled machines, that are able to produce various
parts with high complexity.

A general problem in a production line is the timing of the part feeding. It is
not automaticaly known when part feeding is supposed to happen, which is why
detection and communication is important to be implemented in the soft automa-
tion. It is an aim of future development, to create flexible manufacturing systems
with as high productivity as possible. Such systems naturally need a flexible part
feeding, which except of humans can be carried out by implementation of e.g.
mobile manipulators. (Kalpakjian and Schmid 2014)

2.2 FESTO CP Factory Use Case

In Section 2.1, different part feeding challenges, one can encounter in an automated
production line, were described. This section investigates part feeding tasks of the
FESTO CP Factory. This is done in order to give an overview of the potential part
feeding challenges related to the FESTO CP Factory. There are three different parts

Figure 2.1: Connection of the FESTO CP Factory modules with all the part feeding processes high-
lighted.

2.2. FESTO CP Factory Use Case 7

that need to be fed to the modules in the system (see Figure 2.1). When feeding
the three parts, there are certain considerations to keep in mind:

(a) The PCB tray. (b) Exploded view of the phone assembly.

Figure 2.2: The PCB tray and exploded view of the phone, with phone cases, PCB and fuses.

Phone Cases:
The phone cases, as seen in Figure 2.2b, need to be specifically placed in their
magazine (see Figure 2.3). Because of backlight vision feedback located in the
assembly module (see Figure 2.1), the phone cases can still be processed when
they vary in rotation in the horizontal plane, but problems arise when the
phone case comes to the magazine flipped. In such a situation the assembly
cannot be done successfully, since the system has no way of knowing from
the backlight images that the item was flipped.

PCB’s:
In case of the PCB tray (see Figure 2.2a), it needs to be inserted into the
module in a specific way, where a conveyor then reels the tray inside the
module. The orientation is checked by a piece of metal imbued in a part of the
tray, which triggers a metal sensor inside the module. If the tray orientation
is wrong, the sensor cannot be triggered by the metal piece and the tray is
ejected again. Compared with the phone cases and fuses, the PCB’s come on
a tray, therefore the old tray needs to be removed before inserting a new.

Fuses:
The fuses (see Figure 2.2b) have no specific orientation to be inserted in,
but the insertion itself is a task that requires high precision, which can be
challenging in case of automated part feeding, since they need to be slid into
a small tube that leads inside the module (see Figure 2.3).

8 Chapter 2. Challenges and Integration Proposals

Figure 2.3: The tubes to be fed with the fuses is shown to the left. The magazine for the phone cases
is shown to the right.

Initially, the three kinds of parts are fed to the respective modules manually. Hav-
ing a worker to carry out the task offers a high flexibility, as described in Section 2.1,
but may lack efficiency, robustness, and consistency. However, the FESTO CP Fac-
tory is a case of soft automation, since all modules are easily reprogrammable
via their PLC’s and the production line has a variation of product modifications.
Moreover, the production line does not output products in consistent rate. The
production output is dependent on number of orders placed in the MES, thus high
flexibility during part feeding is required.

Automating the manual part feeding task, by using an AIMM, can ideally increase
the flexibility together with the efficiency. The following section investigates previ-
ous LH’s with the purpose of inspiration for a new LH, specifically made for part
feeding in the FESTO CP Factory.

2.3 Previous Little Helpers

The LH concept has gone through five iterations as seen in Table 2.1. These five
iterations have had different focuses and improvements over their former counter-
parts. This section investigates the five LH’s, with the purpose of reviewing earlier
versions and see what can be used for a future version. (Robotics and Group 2016)

In Table 2.1 all of the previous LH’s are showcased and compared. It is impor-
tant to know that these LH’s were created with learning in mind, thus the task
they were to fulfil is different e.g. LH4 is not meant to drive around autonomously
in a factory whereas the LH3 is. Moreover, all previous LH’s aimed for a battery
life of 7 hours. Given the fact that this was an unchanging requirement in all LH
versions, it can be presumed that such a battery lifetime is achievable and desir-

2.3. Previous Little Helpers 9

Version Year Hardware/Software Pros(+)/Cons(-)

Little Helper 1

2008

Manipulator: Adept Viper s650
Platform: Neobotix MP655L
Software: Adept Desktop, MATLAB, LabVIEW,
VBAI, PlatformCTRL and PltfGUI

+Battery life of 7 hours
+Repeatability of ± 0.02mm
+Payload of 20kg
-Manipulator payload of 2.5kg
-Price of 800 000,- DKK
-Many different software used

Little Helper 2

2011
Manipulator: KUKA LWR
Platform: Neobotix MP655L
Software: FRI, TAPAS Project

+Battery life of 7 hours
+Repeat ability of ± 0.05mm
+Payload of 20kg
+Manipulator payload of 7kg
-Price around 1 million DKK

Little Helper 3

2012
Manipulator: KUKA LWR
Platform: Neobotix MP655L
Software: SBS and ROS

+Battery life of 7 hours
+Repeat ability of ± 0.05mm
+Payload of 20kg
+Manipulator payload of 7kg
+Few different types of software
-Price of 1.14 million DKK

Little Helper 4

2013
Manipulator: UR5
Platform: None
Software: SBS and ROS

+Payload of more than 20kg
+Manipulator payload of 5kg
+Few different types of software
+Price of 314 727,- DKK
-Repeat ability of ± 0.1mm
-No autonomus mobile movement

Little Helper 5

2014
Manipulator: UR5
Platform: None
Software: UR Interface

+Payload of more than 20kg
+Manipulator payload of 5kg
+One software
+Price of 250 000,- DKK
-Repeat ability of ± 0.1mm
-No autonomus mobile movement

Table 2.1: Comparison between the different versions of the LH.

able. Table 2.1 also shows that the payload of the used manipulator first increases
from 2.5 kg to 7 kg and drops to 5 kg afterwards. Although all LH’s were devel-
oped with different task in mind, this can indicate that payload of 2.5 kg is not
sufficient for a broad usage.

The KUKA LWR, used for LH2 and LH3 has higher payload and better repeatabil-
ity than UR5 used for LH4 and LH5, along with built-in torque sensors. However,
implementing the KUKA arm drastically increases the price of LH, without adding
any significant advantages in a regular part feeding operations, e.g. as described
in Section 2.2.

10 Chapter 2. Challenges and Integration Proposals

All LH’s from 1 to 3 needed a workstation calibration because of their mobile
aspect, i.e. imperfections in precision cause their mobile platforms to have an off-
set when arriving to desired locations, which consequentially impairs precision of
the manipulators mounted on them.

SBS was originally developed to be used with a KUKA LWR manipulator, hence its
deployment in LH3 implementation. Since then, it has been expanded in order to
include UR5 so it can be used with LH4. (Bøgh et al. 2008) (Pedersen 2011) (Carøe,
Hvilshøj, and Schou 2012) (Etzerodt, Palmelund-Jensen, and Pedersen 2013)

It can be concluded that LH’s can be used for part feeding as long as mentioned
aspects are taken into consideration. In Section 2.4 challenges for a new version
of LH, dedicated to solving the part feeding cases mentioned in Section 2.2, are
described.

2.4 Integration Challenges

This section looks into the challenges of deploying a new version of the LH (LH6)
into an Industry 4.0 environment, i.e. the FESTO CP Factory. In order to iden-
tify challenges in this section, the challenges from previous LH’s mentioned in
Section 2.3 are used as an inspiration.

2.4.1 Assembly of LH6 Components

Inspired by the previous versions of LH, the LH6 is to be put together by four
parts:

• Mobile platform

• Manipulator

• Tool

• Sensors

These four essentials need to be put together in order to form an AIMM. In case of
other LH’s, the manipulator is placed in the rear area of a frame, which is placed
on top of the platform. Some versions have it mounted in the corner and others
in middle of the rear area. No matter which mobile platform is chosen for LH6,
a frame is needed to mount the mobile platform and manipulator together. It is
also needed that all the hardware components can be stored in a compartment and
room for sensors is to be taken into account. Preferably, the height of the LH6
platform should be same as the one of the conveyor belts of FESTO CP Factory

2.4. Integration Challenges 11

(975 mm), in order to have the dexterous workspace of the manipulator match the
workspace of the modules. The manipulator should be placed so that majority of
the working space on the platform is available.

LH6 should also be easily reconfigurable in order to comply with the concept
of smart production, so it is easy to change the different parts and make it fit a
different task. This can be done by e.g. standardizing the different tool mountings
of the robot, or make the frame height adjustable.

2.4.2 Battery

As seen in Section 2.3, a big concern for an AIMM is the battery which is needed
for it to function. Therefore, the battery capabilities of the product need to be ad-
dressed so it can drive for adequate time before recharging.

For the specific part feeding tasks in the given use case (Section 2.2), it is impor-
tant to have a low downtime in order to keep the flexibility of Industry 4.0. If the
concept is to be expanded into performing other tasks like cleaning, assembly and
transportation of parts, high battery capacity is needed to keep a high efficiency.

2.4.3 Communication

First part of communication to be investigated, is the communication between the
four parts (mobile platform, manipulator, tool and sensors) of LH6. Since the
different manufacturers use different programming languages and interfaces the
communication is not just plug and play. As seen in previous LH’s, a framework
called SBS was used as a common interface between those devices.

LH6 also needs to be able to know when the FESTO CP Factory is running low on
parts. For this, the LH6 needs to have some sort of communication protocol with
the FESTO CP Factory. The PLC’s of FESTO CP Factory are all communicating
with a computer running MES. This software needs to send a signal to LH6 when
a part is running low. This signal could be a simple TCP/IP signal, as illustrated
in Figure 2.4.
Without the connection with MES, LH6 will not be able to perform the part feed-
ing tasks efficiently, since proper scheduling cannot be implemented without MES
communication.

12 Chapter 2. Challenges and Integration Proposals

Figure 2.4: Implementation of AIMM part feeder.

2.4.4 Mapping and Navigation

For an AIMM to navigate around in a factory, it needs to know its location and its
destination. A method for that is called Simultaneous Localization and Mapping
(SLAM). SLAM can be carried out using e.g. laser-scanners, although it can be
difficult to see glass and other transparent surfaces. Another sensor technology
that can be used for navigating around a factory is ultrasonic sensors, however,
they have the weakness of "ghost echos" (noise from reflected waves). Another
method that can be used is "dead reckoning", which is a fairly cheap method to
implement both computation- and cost-wise, since no additional sensors are re-
quired. It works by knowing the diameter and rotations of the wheel and by that
it can calculate the distance, speed and orientation. Though it is prone to errors
because if the wheel slips on the surface it loses track of the real world and will
start thinking it is in another place than it really is. A way to improve on the dead
reckoning is to implement a mapping system, using e.g. a laser-scanner. With a
laser-scanner it is possible to correct the errors from dead reckoning by scanning
the area and combining the information from both. However, this comes with the
extra cost of at least one laser-scanner. (Corke 2013)

Furthermore, due to the imprecision of mobile platforms to reach their goal, a
calibration method is necessary at all locations where the manipulator is required
to interact with surroundings. This can be achieved e.g. by haptic feedback (as in
LH2 and LH3), or by using a 3D camera (as in LH1).

2.5. Skill Based System 13

2.4.5 Safety

Since the LH6 is an experimental device and not for commercial use, it is not oblig-
atory to follow all the ISO standards. However, some of the ISO standards are still
useful as an argument for the design of the LH6 and to fully understand the given
task, because of the critical point of view the ISO standards provide. ISO 13850
is focusing on the emergency stop buttons (everything from placement to how the
buttons should look), which is relevant for this project, since the manipulator and
the mobile platform need to have a synchronized stop button. When the platform
is moving around, the button needs to be reachable all around the robot, no matter
where the operator is located.

When the manipulator is moving, the mobile platform should be stationary, and by
using an alert system (e.g. LED or sound system) LH6 can warn the surroundings
about the manipulator moving.

2.4.6 Part Feeding

As mentioned in Section 2.2 there are three different types of part feeding chal-
lenges. These three different types of part feeding challenges could have their own
dedicated gripper. This is because they are different in shape, size and weight.
However, the LH6 is meant to be flexible, thus it is desirable to perform all three
tasks with just one gripper.

2.4.7 User-Friendliness

In a production facility there are several operators and not all of them have an
engineering degree in robotics, programming etc. Thus an easy intuitive interface
with simple commands is wanted. This is done so an employee which has not
touched the program before can learn it easily and execute basic commands like
pick and place.

One example of such a software framework is SBS, which strives to achieve easy
reprogramming of AIMM for non programming experts.

2.5 Skill Based System

The software used for this project is based on a framework called SBS. SBS is a pro-
gram built for the LH’s, which through an intuitive interface enables programming
of AIMM’s. SBS is built on the open source Robotic Operating System (ROS) and
is programmed in C++ through a GUI application development framework from
Qt company.

14 Chapter 2. Challenges and Integration Proposals

SBS has a hierarchy consisting of different layers. Those layers are decomposed
in the following three sections (for an illustration of the layers see Figure 2.5).

Figure 2.5: The hierarchy of SBS. (Pedersen et al. 2016)

2.5.1 Tasks

The first layer of SBS is tasks. A task is a production-level goal similar to those task
a human worker would be instructed to perform, e.g. assemble A, fill feeder B etc.
Each task can be decomposed into smaller sequences called skills. A robot is able
to perform a task if it is capable of performing all skills that task consists of.

2.5.2 Skills

Skills are the building block of SBS. The amount and types of skills are dependent
on what hardware and what types of sensors the robot is equipped with. The
more technology implemented the more flexible the system becomes. A skill is e.g.
"pick up object" and consists of a number of device primitives. In SBS, skills are
the lowest form of programming an operator can use and raises the programming
to an intuitive level.

2.5.3 Device Primitives

Device primitives are the basic motions and operations such as open gripper and
camera read. These are the low-level commands that form a skill and are directly

2.5. Skill Based System 15

connected to the controlled hardware. This makes it possible to have a real time
control of a robot.

2.5.4 Concept of SBS

As mentioned in Section 2.5.2, skills are the basic programmable element in SBS,
which is available to the operator. An exact definition of a skill is a discussable mat-
ter. A simple and open definition is that a skill should follow a specific structure,
illustrated in Figure 2.6. The presented structure allows to create skills necessary

Figure 2.6: Model of a skill infrastructure. (Bøgh et al. 2012)

for intuitive assembly of specific tasks, while securing robustness through imple-
mented preconditions and postconditions. Moreover, skills should keep a certain
level of generality for flexible deployment. That is why execution of standard skills
is preceded by a teaching session, where the exact behaviour of a skill is taught.
The level of skill’s generality is specified by the type of the skill:

Generic skills: Basic low-level skills made from sequences of device primitives,
that are specified by teaching. Generic skills are an advanced implementa-
tion, since work with motion primitives is required, but they provide a high
versatility and reusability.

Application-oriented skills: Those are made to solve specific needs of certain ap-
plication in e.g. a manufacturing company. When suitable generic skills are
not available to solve a specific case, a specialized skill can be developed.
Such skills can have higher abstraction since they are made of device primi-
tives and also of other generic skills (nested skills). Although convenient in
a specific case, application-oriented skills lack the versatility of generic skills
and thus the reusability.

The different segments of a skill shown in Figure 2.6 are important to secure de-
sired robustness of a skill and thus safe execution:

Precondition: A number of conditions that need to be met in order to proceed
to execution of the given skill. Preconditions are structured to return only

16 Chapter 2. Challenges and Integration Proposals

true or false (i.e. proceed or fail) and can investigate either readings of the
concerned component (manipulator, gripper, etc.), or use sensors or visual
feedback for inspection. In case of a pick skill, the precondition can be e.g.
"is the gripper opened?", "is the manipulator in range?", or "is the object
present?". Last mentioned is an example of an inspection. When all precon-
ditions are met, the skill can be executed. Having strict preconditions for all
skills results in a robust program.

Execution: Main body of a skill, which executes orders, taught during a teaching
session, after preconditioning was successful.

Postcondition: Postcondition is a term combining prediction and evaluation from
Figure 2.6 and, as preconditions, can return true or false. A prediction states
what is the expected result of executing a given skill. After execution, the
evaluation compares the actual result of the execution and the prediction
model, and can optionally output statistics of skill executions for diagnostic
purposes. In case of a pick skill the postcondition could be e.g. "is the
gripper closed?", or "is the object grasped?". If a postcondition evaluates the
result as not satisfactory, the next skill in the sequence cannot be executed.
Postconditions can be used for further increasing robustness and also as a
diagnostics tool.

A powerful aspect of skills is "object-centring". When programming a pick and
place task by traditional methods, one has to specify Cartesian coordinates of a
specific object. While using skills, it is the object that is specified, not the coordi-
nates. By using vision, or sensor devices, it is then possible to locate the object at
runtime and carry out the grasping function from there. (Bøgh et al. 2012)

This section described the structure and concept of SBS, which is an important
knowledge if the LH6 is to be integrated in it.

Chapter 3

Problem Formulation

As mentioned in Chapter 1, there is a general shift in how to design production
systems, going from hard automation to soft automation where high efficiency is
achieved without the loss of flexibility. The goal of this project is to solve part feed-
ing challenges in an Industry 4.0 production line by developing an AIMM (next
generation of the Little Helper project), that is able to raise the self-sustainability
and flexibility of a smart production. The FESTO CP Factory used for assembling
smart-phone dummies is taken as a context for this project (see Section 1.3), where
the LH needs to be designed for feeding in the necessary parts to the dedicated
assembly modules. LH is to be created by selecting and combining a fitting mobile
platform and a manipulator. Integrating those two platforms poses certain chal-
lenges regarding battery life, logistics, communication, physical limitations, safety
considerations and gripper selection, that need to be considered in design require-
ments of this project. Those challenges are explained in Section 2.4.

Final problem statement: How can the part feeding tasks at the FESTO CP Factory
line be solved by utilizing an AIMM with SBS integration?

3.1 Solution Proposal

The part feeding of the smart production line is to be solved by creating a new ver-
sion of Little Helper AIMM robot (LH6). A fitting mobile platform and a manipula-
tor need to be selected in order to comply with described challenges in Section 2.4.
The mobility is achieved by placing the manipulator on top of the platform by
custom-created mounting, and by connecting the manipulator to a battery. When
designing the mounting and deciding on the material, it is important to keep in
mind weight limits of the platform and desired operational height for the manip-
ulator.

17

18 Chapter 3. Problem Formulation

The communication of all devices poses also a challenge. Mobile platform, manip-
ulator, gripper and FESTO CP Factory need to be on a same Local Area Network
in order to be able to communicate with each other through TCP/IP protocol.
FESTO’s MES can afterwards send commands to LH6, when it is necessary to
carry out the given tasks. The mobile platform and the manipulator need to be
programmed and controlled by SBS to provide higher user-friendliness for a po-
tential operator with no programming experience. If not already, they have to be
also integrated into the SBS program and ROS driver packages need to be devel-
oped.

Lastly, there are certain considerations to be done regarding safety of LH6. Since
the robot is expected to drive in places accessible by other people, it is necessary
to asses risks and follow certain rules regarding collaborative robots. The robot
needs a unified emergency button, limited operational speed, and connection of
safety break signals. Also, the manipulator should not be allowed to move while
the mobile platform is driving, and during this time it should remain in defined
home position.

The design requirements and considerations are further explained in Chapter 4.

Chapter 4

Requirements Specifications

This chapter presents design requirements of the LH6 (Section 4.1), as well as
delimitations for the given part feeding use case (Section 4.2). The requirements
discussed here are based on collected data in Chapter 2.

4.1 Design Requirements

This section discusses the requirements that the final LH6 should comply with.
The design requirements are split into several groups (Hardware, Software, Safety,
and Operation.)

4.1.1 Software

1. Software framework
The software framework for this project is SBS and thus LH6 should be pro-
grammable in SBS.

2. Accurate positioning control
LH6 should be able to move the manipulator with respect to the surroundings
(e.g. machines it interacts with). This means that the manipulator may have
to compensate for imprecise positioning of the mobile platform.

3. SBS Skills
For LH6 to be used with SBS, certain functionalities are needed. These func-
tionalities are Drive, Pick, Place, Move, Communication and Calibration and
are required in order for LH6 to solve the part feeding (see Section 2.2).

4.1.2 Hardware

1. Battery life
Due to the nature of smart production facilities it is not possible to predict the

19

20 Chapter 4. Requirements Specifications

cycletime and thus when a part feeding task is to be carried out. Therefore it
is important that the battery life is sufficient long in order to not risk delaying
production because of recharging. Since the task the LH6 is carrying out is
originally done by an operator, the LH6 should not have more down-time
than an operator. In general, the battery life should aim to withstand at least
a standard daily schedule (3.5 hr work, 1 hr break, 3.5 hr work).

2. One common power source
For sake of simplicity and convenience, all electric components used for LH6
should be connected to one common power source.

3. LH6 should be able to carry a minimum of 20 kg
The previous LH’s were designed with a possibility to carry up to 20 kg,
which exceeds the weight of the heaviest part that is to be fed, according to
the use case (Section 2.2).

4. The manipulator should be able to lift at least 5 kg
Similarly to requirement 3, the heaviest object that can be expected to be fed,
is the PCB tray, which weighs approx. 2.2 kg. The selected manipulator thus
needs to be able to lift the mentioned tray, plus the equipped gripper.

5. Electric gripper is to be used
LH6 is an AIMM, where weight and battery life are essential points. This
project is limited to electric grippers because they do not need a compressor,
which conserves payload and space in the compartment. Furthermore, they
offer more functionalities and SBS already contains drivers for certain electric
grippers, which is considered advantageous.

6. Height of the table should be adjustable
If the LH should be as flexible as possible, then the table mounting of the
manipulator should have legs with adjustable height. This makes the imple-
mentation on different production lines easier, thanks to fast adaptability to
various heights.

4.1.3 Safety

1. Unified emergency button
LH6 should be equipped with only one line of emergency buttons. This
means that whatever emergency button is pressed, all actuators on LH6 will
stop. It is needed to avoid confusion of function of each emergency button.

2. Common safety break
If a protective stop on the manipulator or the mobile platform is triggered,
all systems in LH6 should enter a safety break, stopping all motions.

4.2. Delimitations 21

3. Movement restrictions
For safety only the manipulator or the mobile platform is allowed to be op-
erating at a time. This means that the manipulator cannot move before the
mobile platform has come to a complete stop and vice versa.

4.1.4 Operation

1. Autonomous recharging
The recharging is a task that is expected to occur on a daily basis. It is be-
lieved that the most efficient way to carry it out is to program the robot to
autonomously visit a docking station for recharging when the battery/bat-
teries goes below 10%.

2. TCP/IP communication interface with FESTO CP Factory
LH6 will be integrated in a smart production facility where it will fill out
the role of part feeding. Therefore it is necessary to have an external com-
munication channel for the factory to notify LH6 about low part stock. This
communication channel exists only for notifying the LH6 of low stock.

4.2 Delimitations

For the scope of this project, there are certain delimitations that were decided upon.
The aim is to solve only part feeding to one module of the FESTO CP Factory,
which is the PCB assembly module. Multiple PCB’s are inserted in the module
using a tray. The opening, in the feeding point, for the tray is 321.65 mm wide and
50.73 mm high and the tray is 300 mm wide, 400 mm long and 38 mm high. LH6
needs to be able to replace an empty tray with a full one (see Figure 4.1). In order
to do that, a precision requirement needs to be established, i.e. LH6 should have
an accuracy of ± 10.8 mm, based on the mentioned measurements.

Because of the one-module focus, it has been decided also to fit the construc-
tion to the delimited scenario, meaning that the height of the table-mounting for
the manipulator will not have an adjustable height. Instead, an optimal height for
handling the PCB trays will be specified, and the table mounting will be manufac-
tured in that desired height with no adjustment options. This optimal height is to
be based on the height of the tray feed-in point, which is 975 mm above ground
(see Section 2.4). Furthermore, the problem of communication has been reduced
to only be between the LH6 and the PLC of the particular assembly module that is
being used. It is not considered necessary for this project to implement communi-
cation with the rest of the PLC’s in the FESTO CP Factory.

22 Chapter 4. Requirements Specifications

(a) The PCB’s on a tray. (b) The tray to be reeled into the
PCB assembly module.

Figure 4.1: Investigation of the manipulated part and feeding point.

The main focus is put on establishing the communication between the PLC and the
LH6 and carrying out the part feeding task itself, thus the issues, like autonomous
charging, are excluded from the scope for this project. It is also assumed that LH6
has a full PCB tray available at any given point, since processes before the part
feeding are out of scope of this project. Furthermore, skills like Move, Pick, Place
are already in SBS and are assumed to be sufficient for solving the given part feed-
ing task.

There is a considerable amount of safety regulations (ISO standards) that should
be looked into when designing a mobile manipulator, such as LH6. However,
the product of this project is dedicated for research purposes, not for commercial
usage, so even though such regulations were investigated into certain extent (see
Section 2.4.5), complying with them is not considered a high priority goal. Based
on this decision, maximum operational speed limits are not taken into account.

All the mentioned delimitations are applied because of limited time and resources
allocated for this project. After taking the delimitations into consideration, a list of
final requirements was derived, which can be seen in Section 4.2.1.

4.2. Delimitations 23

Given Hardware

For this project some hardware was provided. Therefore the mobile platform of
LH6 is a MiR100 and the manipulator is a UR5. These two solve some of the
requirements such as a payload and lifting capability so they become limits of the
LH6 instead a requirement. MiR100 also has a router on board which can be used
for communication between all subsystems. However, MiR100 brings the need of
some new functionalities, like a Drive functionality.
A Robotiq 3-Finger gripper was also given and will act as the tool for this project’s
part feeding.

24 Chapter 4. Requirements Specifications

4.2.1 Final Requirements

The enlisted requirements in this section are the ones this project focuses on. The
rest of the requirements mentioned in Section 4.1 are reserved for future work.
Figure 4.2 illustrates the focus of this project, which is to develop an AIMM to carry
out part feeding of a specific assembly module, by communicating with the PLC of
that module (communication with MES is neglected). The delimited requirements
are listed in Table 4.1.

Figure 4.2: Focus of this project is highlighted in red. Features neglected through delimitation are
faded.

Item Description Value Unit
1 Battery life 3.5 - 1 - 3.5 Hours
2 LH6 payload 20 kg
3 Manipulator payload 5 kg
4 Manipulator precision ±10.8 mm
5 Electric gripper - -
6 Common power source - -
7 Programmable in SBS - -
8 Drive Functionality - -
9 Common emergency buttons - -
10 Restrict manipulator movement when mobile platform moves - -
11 Restrict mobile platform movement when manipulator moves - -
12 Communication with the PLC of the assembly module PLC - -

Table 4.1: Table of requirements.

Chapter 5

Solution Proposal for Delimited Case

After the part feeding has been delimited, a general description of the case can
be made. This chapter gives a step-by-step description of the part feeding process
by going through the manual operations and then through a solution proposal on
how it all can be automated by a new generation of a LH.

When the assembly module registers that the tray, containing the PCB’s, is empty,
it reels out the tray for an operator to replace. The tray is then accessible on a
conveyor on the side of the module. Once an operator has replaced the empty
tray with a new, full one, he/she can press a button located on the module next
to the conveyor which reels in the tray and the operation of the module resumes.
Alternatively an automation of the delimited case can be divided up into three
processes.

Driving to: When the assembly module detects that the tray is empty it sends
a signal to the LH6. As mentioned in Section 4.2, it is assumed that the LH6 al-
ready has a full tray on its platform. It then drives to the assembly module. This
process is illustrated in Figure 5.1a

The arrival: When LH6 has arrived, a calibration that calculates the offset of the
LH6 is done. Since MiR100’s precision is ±10 cm, it is needed for precision so
that the manipulator does not collide with the surroundings. Once the offset is
calculated, the manipulator moves with respect to the surroundings rather than
the mobile platform it is placed on. The calibration is shown in Figure 5.1b.

Exchange: The LH6 picks out the empty tray and places it on its table next to
the new tray (see Figure 5.2a). Afterwards it places the new tray inside the module
(see Figure 5.2b). The last thing to do is to signal to the assembly module that the
exchange has taken place and the new tray is ready to be pulled in (see Figure 5.2c).

25

26 Chapter 5. Solution Proposal for Delimited Case

(a) The assembly module sends a signal,
which the LH6 responds by arriving to a
given destination.

(b) On arrival a calibra-
tion is done to calculate
the offset of the LH6.

Figure 5.1

(a) The LH6 places the
empty tray on its table
and then picks up the
new tray.

(b) The new tray is placed
on the conveyor and
pushed halfway in.

(c) A signal is sent to the
assembly module that
the tray can be reeled in.

Figure 5.2

Part feeding is then fully automated, since there is now no need for any human
labour on the assembly module. In order to perform these operations, LH6 needs
certain functionalities, both hardware and software wise, which is described in
depth in Chapter 6.

Chapter 6

LH6 Architecture

LH6 is an AIMM created by several hardware components. It consists of four main
parts:

• Mobile platform (Section 6.1)

• Manipulator (Section 6.2)

• Gripper (Section 6.3)

• Sensors (Section 6.5)

Furthermore, there are other aspects to be taken into consideration such as electric
circuit and network connection (Section 6.6) and hardware design (Section 6.4.
As mentioned in the delimitation (see Section 4.2), specific products are provided
and used for the solution (MiR100, UR5, Robotiq 3-Finger). This chapter contains
a description of the mentioned components and their integration in the ROS en-
vironment, together with a description of LH6’s hardware design. Regarding the
ROS integration, the ROS drivers for the UR5 and Robotiq 3-Finger used in this
project are taken from integration in previous LH projects. For that reason they
are not described. The ROS driver for the MiR100 platform is, however, created in
scope of this project. Its description can be found in Section 6.1.1.

6.1 Mobile platform - MiR100

In order to make it possible for the LH6 to drive and navigate autonomously in a
dynamic environment, a mobile platform with this ability is required for the LH6.
As a given hardware component, a mobile platform from Mobile Industrial Robots
called MiR100 is provided (see Figure 6.1). MiR100 is a flexible mobile platform
which by several sensors is able to map e.g a factory hall, and drive to predefined
positions in the created map, while detecting and avoiding obstacles. MiR100 has

27

28 Chapter 6. LH6 Architecture

a local network, to which the user can connect using a smart phone, computer or
a tablet and program/control the robot through a web interface, which achieves to
simplify the programming of MiR100.

Figure 6.1: Picture of MiR100. (MiR-ApS 2016c)

The MiR100 has a running time of 10 hours, and has a max speed of 5.4 km/h to
drive forward and 1 km/h driving backward. It reaches a given destination with
a positioning accuracy of 10 cm in radius. It is important to note that the MiR100
has two actuated wheels in the center and in each corner it has a 360 degrees turn
wheel.

There is a ROS master running on MiR100 and its topics and services can be
accessed by using e.g. Rosbridge, or a REST API. Those are ways to transmit
the topics and services in a JSON format over the network. Another way to
access the ROS master of MiR100 would be by the following command: export
ROS_MASTER_URI=http://mir.com:11311. The port 11311 is a default port, how-
ever, different one can be specified.

MiR100’s ability is to detect and avoid obstacles. It is not just able to coordinate the
speed with how close objects are, but it is able to evaluate the situation and stop
by itself if needed. This applies not only for objects standing still but also objects
in motion. The MiR100 has LED’s and speakers, which can be used for warnings
and announcements. The last safety feature is the emergency button placed on top
of the MiR100.

Since the MiR100 is able to move around, it also needs a navigation system. In
total there are three sensor technologies that form the detection and mapping sys-

6.1. Mobile platform - MiR100 29

tem of the MiR100. The most important sensors are the SICK laser scanners S300.
The laser scanners enable MiR100 to have view of 360 degrees, but since these are
mounted on the front left corner and the back right corner it has a view of 270 de-
grees on both of the scanners. However, it is important to notice that the scanners
provide only planar reading, i.e. they scan the 2D plane in height of 20 cm above
the ground. This can be a challenge, when e.g. trying to detect a table. The second
sensor type is a 3D camera. It is able to detect objects ahead 5-50 cm above the
floor. The last kind of sensors on the MiR100 are the Ultrasonic scanners. They are
enabling the MiR100 to detect transparent objects ahead of it.

6.1.1 MiR100 Driver

In order to prepare MiR100 for any SBS implementation, a ROS driver needs to
be created. In the documentation of the MiR100, found on the MiR support fo-
rum (https://mirrobot.atlassian.net/servicedesk/customer/portal/), there are tu-
torials on how to connect to the robot through a Rosbridge server and a REST API,
when using Python. These tutorials are used as a base for the MiR100 driver.

From the documentation related to the Rosbridge server, a Python script with
functions that allows communication between the Python script and the services
or topics, published on the MiR100, is used in the driver.

The documentation related to the REST API was found via a web browser con-
nected to the MiR100 network on http://mir.com:8080/doc and in a Python script
found on the MiR support forum. The homepage consists of different REST API
commands, and the Python script consists of some examples of how to call these
commands.

In the MiR100 driver the two communication interfaces have different functional-
ities. As mentioned, the Rosbridge communicates with the MiR100 through re-
quests sent directly to the topics or services published on the MiR100. Therefore,
the Rosbridge in general is used for lower level functionalities, such as setting the
command velocity (device-primitives). Setting the command velocity using the
Rosbridge communication is done the same way as on many other mobile plat-
forms. Simply publish the velocities to a topic, using the topic "/cmd_vel", or the
service in the MiR100 driver "/mir_set_cmd_vel". The same way the modes of
the robot can be set using the service of the MiR100 "/mircontrol/set_mode" or
the service in the MiR100 driver "/mir_set_mode". On the other hand the REST
API, can be used for higher level functionalities and can therefore be used directly
as a skill, e.g. the "/mir_drive_to_position" which is used to execute a "Drive
To" skill described in Section 8.4. This means, that in order to make a Drive To

http://mir.com:8080/doc

30 Chapter 6. LH6 Architecture

Figure 6.2: Structure of the MiR100 driver.

functionality, the REST API is necessary as it allows creation of both positions and
missions. The robot moves to given positions by creating a mission. A mission
contains necessary information such as how many times MiR100 should retry to
find a path to the goal position if the path is blocked or what the precision toler-
ance is when it reaches the goal position. In this way the MiR100 driver can take a
name of a position and drive to it. For all the functionalities of the MiR100 driver
see Figure 6.2.

The following list describes the main functionalities of the MiR100 driver and how
they are intended to be used. The functionalities listed in this description are re-
lated to the essential MiR100 functionalities in the SBS (for a list of all the services
and their communication method see Figure 6.2).

"/mir_set_cmd_vel":
This service makes it possible to manually drive the MiR100. The intended
use of this functionality is to manually drive the robot to positions in order
to teach them.

"/mir_create_position":
This service creates a position on the currently selected map. The service
needs the following arguments: "name", "pos_x", "pos_y", "orientation".
The intended use of the service is when to save the current position of

6.2. Manipulator - UR5 31

the MiR100. This service is often used together with "/mir_get_current_

position".

"/mir_get_current_position":
When requesting this service, it returns the current position and orientation
("pos_x", "pos_y", "orientation") of the MiR100 with respect to the active
map.

"/mir_get_position_relevant":
The response of this service returns a list of position names existing on the
active map of the MiR100. The intended use of this service is to choose
among created positions when executing the "DriveTo" functionality.

"/mir_drive_to_position":
This service executes the Drive To functionality discussed in Section 4.1.1.
The service takes the following arguments: "name" (position name), "num_
retries" (set by default to 10), and dist_to_goalthreshold (set by default
to 0.1). This service is in other words executing the "DriveTo" functionality.

6.2 Manipulator - UR5

In order to follow the conventions of previous LH’s and increase the flexibility and
variety of tasks that the LH6 can solve, a manipulator is integrated together with
the MiR100. For this project a specific manipulator, UR5 from Universal Robots, is
used (see Figure 6.3). UR5 is a collaborative industrial manipulator.

This section assesses UR5’s specifications, safety considerations, communication
possibilities, and identifies possible challenges related to the robot.
If the UR5 implementation is to be successful, the specifications of the robot need
to be evaluated if they are sufficient for the desired application. The list of basic
attributes of UR5 can be seen in Table 6.1. Considering the given use case scenario
described in Section 2.2, the payload of 5 kg seems to be more than enough for
handling all the mentioned parts, especially the tray with PCB’s, since the delimi-
tation of this project is only to carry out the PCB part feeding (see Section 4.2). The
weight of the robot alone complies with MiR100’s weight limits (see Section 6.1)
and keeps a high payload reserve for the rest of the components.
While on the same network, the UR5 is able to communicate with other equipment
through a TCP/IP protocol, where usually the robot acts like client and a computer
as server. When there is an attempt to communicate with the robot by a ROS node,
it is required to upload a script written in URScript (similar to Python), which then
translates all the commands sent by the node to the robot. (Universal-Robots-A/S

32 Chapter 6. LH6 Architecture

Figure 6.3: UR5 robot. (Universal-Robots-A/S 2016b)

Weight 18.4 kg
Payload 5.0 kg
Reach 850 mm
Degrees of Freedom 6

Table 6.1: Basic specifications of the UR5 robot. (Universal-Robots-A/S 2016d)

2016a)

Since the UR5 is supposed to be operating in non-enclosed environment as a col-
laborative robot, safety of the implementation must be considered. All products of
Universal Robots posses an algorithm for applied force estimation, which should
ensure that safety break of the arm will activate before reaching applied force of
set threshold (150 N by default). However, certain tests proved that depending
solely on the algorithm without having any supplemental force/torque sensors is
not necessarily reliable, meaning that, due to negligence of safety and without risk
assessment, serious accidents can still happen. (Bonev 2014)

The power supply of the UR5 poses a challenge. Because of the required mobility,
the robotic arm cannot be traditionally connected to a power socket. It has been
also estimated that connecting UR5 to the battery of MiR100 would significantly
reduce the battery life of the LH6. It might be necessary to add extra power source
on the platform, in order to increase the battery life of the LH6 to an acceptable
level.

6.3. Gripper - Robotiq 3-Finger 33

6.3 Gripper - Robotiq 3-Finger

For this part feeding challenge it is needed to manipulate the PCB tray. This tray
weighs around 2.2 kg and is hard to grasp around for a gripper. For this project
the Robotiq 3-Finger Adaptive Robot Gripper has been given. The Robotiq 3-
Finger gripper has three fingers and has a weight of 2.3 kg. It is able to lift up to
10 kg.(Robotiq 2016a)

Because of the design, weight of the gripper and tray, and the payload of UR5
(5 kg), it can be assumed that UR5 should be able to lift the tray without any
difficulties.

Figure 6.4: Robotiq 3-Finger. (Universal-Robots-A/S 2016b)

6.4 Design of LH6 Mounting

In order to integrate the MiR100 and the UR5, there are several considerations that
need to be done, related to the physical frame integrating the two robots.
For the frame, aluminium alloy profiles from Paletti are chosen. The legs of the
frame are not placed exactly on top of MiR100’s mounting points. They are instead
moved a few centimetre beyond those points in order to increase the workspace of
the tabletop and enabling LH6 to have two trays on top of it (see Figure 6.5). The
height from ground to tabletop is chosen to be 975 mm so the height is the same
height as the conveyor on the FESTO CP Factory.

On top of the frame a raised stand for the UR5 is placed. This stand is placed
on the front right corner to make it easier for the UR5 to reach into the assembly
module and grasp the PCB tray. Furthermore, it is raised above the table to make
sure the UR5 does not hit the trays on the table while turning.

34 Chapter 6. LH6 Architecture

Acrylic glass is mounted all around the frame, in order to create a compart-

Figure 6.5: The complete assembly of LH6 and FESTO CP Factory.

ment for all internal components of LH6. The glass is mounted with four and six
screws so it is easy to open it and do adjustments to the internal components. In
Figure 6.5, a simulation of LH6 and FESTO CP Factory is shown.

6.5 Sensor - 3D Camera Calibration

When a robotic manipulator is programmed to move to a given position in 3D
space, it does so assuming that (0,0,0) coordinate is placed at the base of the robot.
This means that when it is placed on a mobile platform, like LH6, all the pro-
grammed points are placed in the space with respect to the platform. This is not
a problem if the manipulator is only interacting with object, placed on the LH6
platform. Since MiR100 has a position accuracy of 10 cm radius (see Section 6.1),
interacting with the world around it becomes a problem for the manipulator since
it can not be sure that objects are placed 100% in the same spot every time. This
section consists of the architecture of how this problem is solved, using a ROS

6.5. Sensor - 3D Camera Calibration 35

driver and a theory from a paper, investigating fast calibration for AIMM’s. (An-
dersen et al. 2013)

A solution to this is to have a fixed point in the world coordinate system to which
all the robot movements are done with respect to. This means that, even if the mo-
bile platform did not hit the same spot as when the manipulator was programmed,
by doing a calibration the manipulator can account for the offset and thus interact
with the surroundings as intended.

Using a ROS driver, which is able to return a transformation matrix from a 3D
camera to a QR-code, this fixed point can be found. In order for the ROS calibra-
tion driver to work, a 3D camera and an RGB camera are needed. In this project an
ASUS Xiton 3D Camera is used and mounted on the LH6. Furthermore, it will be
necessary to have a QR-code at each location where the LH6 needs to be calibrated,
in order to interact with its surroundings. The QR-code acts as the reference point
for the robotic manipulator so all movements are done with respect to its position
in space.

When a calibration is initiated, the computer takes an image from the camera and
scans it for a QR-code. When the QR-code is located, the three corners of the QR-
code from the depth image are used to create a plane in 3D space. This plane can
then be used to calculate the transformation from the camera to the QR-code.

In order to obtain a world frame, a transformation matrix from the QR-code to
the tool of the manipulator (Q

t T) is needed. Q
t T is expressed in Equation 6.1 and

illustrated in Figure 6.6.
Q
t T =Q

C T ·CB T ·Bt T (6.1)

Q
C T is the transformation from the QR-code to the camera (obtained by taking the

inverse of what the ROS driver returns), this is dynamic and changes with respect
to the orientation and position of the mobile platform. C

B T is the transformation
from the camera to the base of the manipulator. This transformation is constant.
Lastly, B

t T is the transformation from the base of the manipulator to the tool. A
static B

t T is used to calculate Q
t T when teaching. During the teaching B

t T is ob-
tained by a kinematic model of the manipulator.

When the mobile platform moves, and arrives back to the position from where
the calibration is done, B

t T becomes dynamic, and is the transformation needed to
be calculated in order to take account for the offset. The equation for B

t T can be
seen in Equation 6.2.

36 Chapter 6. LH6 Architecture

Figure 6.6: Transformation from the QR-code to the tool.

B
t T = (Q

C T ·CB T)−1 ·Qt T (6.2)

Since the camera will not be placed at the base of the manipulator, it is necessary
to calculate the transformation from the camera to the base (C

B T), which is used as a
constant for any given case. C

B T can be obtained either by measuring or calculated
using the camera and a QR-code placed in the tool of the manipulator (see Fig-
ure 6.7). The transformation from the QR-code to the tool (Q

t T) can be measured,
using the center of the QR-code and the geometric of the tool. B

t T can be calculated
using the kinematic model of the manipulator. Q

C T can be determined by using
aforementioned method. C

B T is unknown and the parameter to be determined. The
calculation for C

B T will thus look like Equation 6.3.

C
B T =C

Q T ·Qt T ·tB T (6.3)

Note that in this equation Q
t T is the transformation from the QR-code to the tool

directly, i.e. a measured distance.

A camera calibration skill is already implemented in SBS using the ROS driver

6.6. Network and Electric Circuit of LH6 37

Figure 6.7: Illustration of setup.(Andersen et al. 2013)

called QR-pose along with openni2 to connect to the camera. QR-pose uses a pro-
gram called zbar to locate and read the QR-codes. All these three programs needs
to be installed and running before the skill can be used.

6.6 Network and Electric Circuit of LH6

With LH6 assembled accordingly to Section 6.4, the last thing to do is to design a
fitting electric circuit in order to power up all electric components onboard. More-
over, all the main components (MiR100, UR5, Robotiq 3-Finger) need to be on the
same network with a PC running the dedicated drivers. In case of both the network
connection and the power supply, it is unacceptable for the deployed solution to
impair mobility in any way.

6.6.1 Network Setup

In order to establish the TCP/IP communication between LH6 main components
and their ROS drivers, a network needs to be set up. To not influence the mobility
of LH6, the computer running the drivers needs to connect to all the components
wireless. The wireless router integrated inside of MiR100 can be used for this
purpose, i.e. if UR5 and Robotiq 3-Finger are connected to this router, then all
three devices are accessible through connection to MiR100’s WiFi. For future con-
venience, UR5 and Robotiq 3-Finger are not going to be connected directly to the
router. Instead, they are to be connected to a network switch inside LH6’s com-
partment and the switch is to be connected to the router. Such installation makes

38 Chapter 6. LH6 Architecture

network troubleshooting and future developments of LH6 easier, since connection
of present devices can be investigated and new devices can be connected without
the need to take the frame down from MiR100, whenever a modification is neces-
sary. The logistics of the LH6 devices’ network can be seen in Figure 6.8 along with
all devices’ fixed IP addresses. A starting point in deciding on those addresses was
MiR100, since it has a static IP which is not easily changeable. That is why all
the other devices (UR5, Robotiq 3-Finger, and the PC) need to be given MiR100’s
network prefix (192.168.12.x). Their host number (x) is an arbitrary 8-bit integer
(0 - 255). With the network set up correctly, the drivers can now run on the PC

Figure 6.8: Network connection of LH6.

simultaneously and control all the devices at the same time.

6.6.2 Electric Circuit

This section describes the design of a circuitry equipped by LH6. There are cer-
tain considerations that need to be taken into account, since all the electric equip-
ment on LH6 needs to be powered by batteries, in order to preserve mobility of
LH6, which includes even the components that are usually connected to a socket
(230 V). However, the components have also a possibility to be powered by certain
voltage in DC, which can be found in their individual specification sheets. For the
individual DC voltage needs, see Table 6.2. Some of the power consumption data
could not be found directly in the specification sheets, but had to be calculated

6.6. Network and Electric Circuit of LH6 39

Component DC Voltage Input Power
UR5 48V 200W
Robotiq 3-Finger 24V 36W
Linksys switch 12V 6W
MiR100 24V 94W

Table 6.2: Electrical specifications of the LH6 equipment. (Universal-Robots-A/S 2016c) (MiR-ApS
2016a) (Cisco 2016) (Robotiq 2016b)

from other provided information instead (see Equation 6.4).

Pswitch = 12V · 0.5A = 6W

IMiR =
39Ah
10hr

= 3.9A

PMiR = 24V · 3.9A = 94W

(6.4)

The information contained in Table 6.2 can be used for deciding on appropriate
power source. The choice of power supply is of high importance, since it also
directly determines the up-time of LH6. MiR100 can provide its battery to the cir-
cuit, which is a Li-NMC 24 V 39 Ah cell pack. In Equation 6.5 it is calculated, how
much Ah is consumed on average, if the system is operated for three hours. The
calculations are approximate since they do not include efficiencies of implemented
converters.

Ptotal = 336W

E3hr = 336W · 3hr = 1008Wh

Q3hr =
1008Wh

24V
= 42Ah

(6.5)

By reversing the process, the running time of the system while connected to the
single battery can be expressed (see Equation 6.6).

Qbattery = 39Ah

Ebattery = 39Ah · 24V = 936Wh

tbattery =
936Wh
336W

= 2.79hr

(6.6)

This calculation concludes that the MiR100 battery alone should be able to drive
the whole system for 2.79 hours. It has been decided to implement an extra battery
of the same kind into the circuit. It needs to be noted that the two batteries are to
be connected in parallel, which yields the same voltage of 24 V and the capacity is
doubled (78 Ah), doubling also the average running time (approx. 5.5 hours).

40 Chapter 6. LH6 Architecture

The voltage of 24 V can be used to directly power only MiR100 and Robotiq 3-
Finger gripper (refer to Table 6.2). In order to supply the rest of the equipment, a
step-up converter is required for supplying the UR5 and step-down converter for
the switch. A schematic of the final circuit with all the described components can
be seen in Figure 6.9.

Figure 6.9: Scheme of the electrical circuit used on LH6.

Chapter 7

Integration

Related to a solution for the part feeding problem described in the delimitation (see
Section 4.2), considerations are done with respect to the integration of the LH6, its
components, the FESTO CP Factory and the different processes within the part
feeding task. In the assembly module on the FESTO CP Factory there is a KUKA

Figure 7.1: The different processes and components in the the part feeding solution.

manipulator. The KUKA controls the tray conveyor and receives signals from the
sensors related to the part feeding task. Note, that the KUKA and the PLC are
running two separate programs.

The procedure for the integration of the different components are illustrated in

41

42 Chapter 7. Integration

Figure 7.1 and summarized in the following list:

1. The KUKA ejects the empty tray.

2. The PLC connects to computer running SBS and sends TCP signal.

3. SBS initiates a skill that makes the LH6 drive in the designated position.

4. Feedback from the MiR100 signalizes to SBS when the platform reached the
final area.

5. Feedback from 3D calibration camera is used to counter the offset of the
MiR100 platform.

6. SBS gets the UR5 to execute the feeding task.

7. A signal is sent to the PLC when the new tray is in.

8. The KUKA program activates the conveyor to reel the new tray into the cell.

This chapter consists of a detailed description of how these processes and com-
ponents are integrated. The chapter is divided into two parts, as in the following
description:

LH6 Integration with SBS:
In order to comply with the design requirements (see Section 4.1), the LH6
should be programmable through SBS. This means that all the ROS drivers
related to the hardware components of LH6 (Robotiq 3-Finger, UR5 and
MiR100), should be integrated into SBS. Since the drivers for the Robotiq
3-Finger, and UR5 are integrated into SBS, the focus of this part will be the
integration of the drive to functionality (Section 7.1) and the QR-code cali-
bration (Section 7.2).

Integration with FESTO CP Factory:
In order to automate the part feeding task related to the FESTO CP Factory, it
is required to create an interface which establishes communication between
the LH6 together with the PLC in the assembly module. With this communi-
cation the FESTO CP Factory should be able to inform LH6 when a feeding
task needs to be carried out and LH6 should inform the FESTO CP Factory
when a feeding task is done (see Figure 7.1). This section consist of a de-
scription of how this interface is designed, and how it is integrated into SBS
(Section 7.3).

7.1. SBS Integration of DriveTo Skill 43

7.1 SBS Integration of DriveTo Skill

In order to solve the part feeding task using LH6, a functionality which is able to
drive the LH6 from an initial position to the feeding point, is essential. This section
consists of a description on how this drive to functionality, obtained by the MiR100
driver (see Section 6.1.1), is integrated into SBS. Initially SBS consists of skills and

Figure 7.2: UML diagram of the classes connected to the DriveTo skill.

device primitives obtained using the ROS drivers for the UR5, the Robotiq 3-Finger
and the QR-code calibration. However, SBS does not have a device primitive for
mobile platforms, that is why the newly created MiR100 driver makes a good base
for implementation.

To make the drive to functionality applicable with the initial skills in SBS and
thereby increase the flexibility of the drive to functionality, a skill named DriveTo
is created. This is done by implementing a class (also named DriveTo) into SBS,
which inherits from the BaseSkill class (see Figure 7.2). To make the DriveTo skill
able to communicate with the MiR100 driver a class called MobilePlatformMiR and
a corresponding base class, called MobilePlatFormBase, is implemented. Through
the MobilePlatformMir SBS handles all communication with the MiR100 driver us-
ing ROS services.

After the implementation of the DriveTo skill it can be chosen in the skill menu
and used as well as other skills in SBS. The DriveTo skill is an objected centred
ability as it drives the mobile platform to any given position. As seen in Figure 7.3

44 Chapter 7. Integration

Figure 7.3: DriveTo skill concept.

the preconditions for the DriveTo skill is to check that the mobile platform is in a
state where it is capable of receiving a position and then going to that position. It
can also be whether the targeted position is accessible, i.e. not in a wall or outside
the map. The postcondition is to check if the predicted state (ready state) matches
up with the actual state. This is convenient since it is not desirable to have the
manipulator move, if the mobile platform did not reach its targeted position. The
Table 7.1 lists all the possible states the MiR100 can be in. It is only when the
MiR100 is in state 3 (ready) it is available to execute the skill.
For safety, the manipulator moves to a predefined home position, before the plat-
form starts driving.
The DriveTo skill is taught through the teach GUI in SBS, from where the MiR100
can be driven to a desired location which can be stored (see Figure 7.4).

7.2. SBS Integration of 3D Camera Calibration 45

MiR100 States Description
0 None
1 Starting MiR100 starting up
2 Shuttingdown MiR100 Shutting down
3 Ready Ready to execute
4 Pause Pause from executing
5 Executing Running a mission
6 Aborted Mission aborted
7 Completed Done executing
8 Docked In the dock and charging the batteries
9 Docking Navigating to docking station
10 Emergencystop Emergency button is activated
11 Manualcontrol A pause state where MiR100 can be moved manually
12 Error General error state - requires error handling

Table 7.1: All possible states the MiR100 can be in.

Figure 7.4: The teach GUI for the DriveTo skill.

7.2 SBS Integration of 3D Camera Calibration

SBS already supports usage of a 3D camera through an already existing skill, called
QR Skill. The skill was originally intended to be used with a KUKA LWR manip-
ulator, where it is possible to change the base of the robot directly on the robot
controller, and thus for doing the calibration this functionality is needed. While

46 Chapter 7. Integration

an UR5 manipulator does not have this functionality, it is necessary to implement
functions in SBS which are able to set the base of the UR5 according to what the
3D camera measures.

In the device primitives of SBS, for the UR5, a function which is able to carry
out this functionality is implemented. The argument of the function is an array
containing the Cartesian coordinates of the base that is to be set (the coordinates
of the original base of the robot as seen from the QR-code).

In order to get the Cartesian position of the tool with respect to the new set base,
a function that by default returns the Cartesian position of the tool with respect
to the original base was modified. By doing so the function is able to return the
Cartesian position of the tool with respect to any new set base (the QR-code).

Lastly, to do the calibration, a function which sends movement commands to the
UR5 controller is modified. By the knowledge obtained in the previous mentioned
functions, the coordinate of the taught position and an implementation of the the-
ory from Section 6.5, the goal position of the tool with respect to the base will be
calculated and sent to the UR5.

7.3 Integration with FESTO CP Factory

This section consists of a description of how the communication between the
FESTO CP Factory and the LH6 is established and how it is integrated into SBS.

7.3.1 Part Feeding Automation

In order to fully automate the part feeding problem by LH6, the PLC connected to
the assembly module is required to activate the conveyor related the module and
receive feedback from the photo eye sensors (see Figure 7.5).

However, all the photo eye sensors and the conveyor button are connected to the
assembly module’s KUKA controller as its I/O’s (see Figure 7.6). Since there is
already an existing connection between the PLC and the KUKA manipulator in the
module, an ideal solution would be to control those I/O’s from the PLC through
the KUKA controller. This implementation would require some additional pro-
gramming on the PLC’s side and editing of the default program on the KUKA
controller. However, due to time constraints a simpler solution is chosen. By
branching the relays of the button and the photo eye sensors, it is possible to con-
nect those to the PLC’s I/O’s, as illustrated in Figure 7.7.

7.3. Integration with FESTO CP Factory 47

Figure 7.5: The sensors related to the assembling module.

Figure 7.6: The initial control of the photo eye sensors and the button.

By connecting the PLC’s output to the relay leading from the button, and assigning
a variable to that output, it is possible to emulate the act of pressing the button via
a program in the PLC without the need to make any changes in the KUKA pro-
gram. Conveniently, the default program running on KUKA makes the tray roll
out when there are no PCB’s left, which can simplify the way the PLC program
for this project is implemented. By doing the same with both the front and back
photoeye sensors, except mapping it as an input, simply enables the PLC to receive
readings from those sensors as well.

48 Chapter 7. Integration

Figure 7.7: Rewiring of the relays.

This way it is possible to control the conveyor by using just the PLC. In order
to make the system work, it is necessary to establish a communication between the
PLC and LH6, so the PLC can inform LH6 when the tray is ready for exchange, or
LH6 can inform the PLC, when the tray has been exchanged. The communication
issue is discussed in Section 7.3.2.

7.3.2 PLC-LH6 Communication

In order for LH6 to carry out its task properly, communication needs to be estab-
lished between SBS and the PLC in the assembly module, so SBS can listen for
status updates about the PCB tray. The PLC needs to receive a signal from SBS,
when the refill is done, so it knows when to reel the tray in and resume regular
work. This information exchange is achieved by establishing a TCP connection
between the devices on the network.

Network Setup

The network setup in this project is illustrated in Figure 7.8. The computer is
connected to the PLC by Ethernet cable and to LH6 devices through WiFi on a
separate LAN. The computer serves as an interpreter and ensures that PLC can
communicate with the rest of the devices. It was assumed that such an approach
has prevailing simplicity. Both MiR100 and the PLC have fixed IP addresses that

7.3. Integration with FESTO CP Factory 49

Figure 7.8: Network setup.

are complicated to change, which means that it is difficult to assign them to a same
network. For this reason it has been decided to connect the computer to the PLC’s
and MiR100’s network separately.

TCP Server and SBS Integration

The setup allows the PLC to communicate with the computer. This section, how-
ever, looks deeper into the communication methodology and discusses what needs
to be done software-wise.

The default program of the PLC in the FESTO CP Factory comes with an installed
library (Solution Center Library), which among other functionalities provides a
function block with a set of methods that handle TCP network communication.
Those tools simplify an implementation of TCP communication in a PLC program.
However, in order to send a TCP signal to the SBS computer (see Figure 7.8), a TCP
server needs to be created. Such server can then be integrated into a ROS node,
which allows it to read from, and publish state messages to chosen topics, depend-
ing on outcomes of handled requests constantly incoming from the PLC. Those
topics can then be read, or published to, by skills in SBS, enabling an event-based
control of LH6 through SBS. The flow of information is illustrated in Figure 7.9.

50 Chapter 7. Integration

Figure 7.9: Flow of information.

7.4. Summary 51

7.4 Summary

This chapter consisted of a description of how new functionalities, hardware and
different processes are integrated into SBS. To add a new Drive To functionality
the MiR100 driver (see Section 6.1) was integrated into SBS. Furthermore, the 3D
camera calibration driver (QR_pose, see Section 6.5) was also integrated in order
to account for MiR100’s imprecision. By implementation of functions, and using
the theory from Section 6.5, the calibration was made possible. Lastly, to establish
communication between the PLC and SBS, a ROS TCP driver was created. For an
illustration of the new integrations of drivers used for this project, see Figure 7.10.
The next Chapter 8, consists of a description of experiments made related to the
integration, the main iterations leading to the physical design of LH6, the design
of the MiR100 driver and a final test of the whole integrated system.

Figure 7.10: ROS drivers integrated in SBS in this project.

Chapter 8

Experiments and Results

This chapter contains a collection of experiment results for the main iterations done
during this project. The Lean Startup Model was the method used to structure the
work flow for this project. Every aspect of LH6 was designed in small iterations,
thus developing on the knowledge gained from prior iterations. Since many itera-
tions were small and quickly lead to new iterations, only the most important ones
are described. It can be seen in Figure 8.1 how different interdisciplinary iterations
were developed upon and combined into the LH6.

Figure 8.1: All main iterations done in this project.

53

54 Chapter 8. Experiments and Results

8.1 Prototype and Construction

The design of the LH6 shown in Section 6.4 was reached by taking several itera-
tions, which are described in this section.

8.1.1 Early Prototype of LH6

In order to investigate the capabilities of MiR100 and its mounting, a mock-up was
made, which consisted of a wooden platform on top of MiR100. An alloy table with
UR5 mounted on it was placed on top of the wooden platform (see Figure 8.2). The

Figure 8.2: LH6 mock-up.

mock-up was used to test different types of scenarios like manipulation of the tray.
It also laid foundations for the CAD models of the first and second prototype.

8.1.2 First CAD Model

The mock-up led to the initial work on the CAD model. The first iterations had the
frame legs placed directly above the mounting holes on the MiR100. It also featured
a raised UR5 mounting in the back center. The raised UR5 mounting was done so
the UR5 would not hit anything on the tabletop while turning. The mounting with
UR5 was placed in the rear part of the platform like in case of the other LH’s. The
tabletop was designed with a height of 975 mm above the ground, which put the
tabletop in the same height as the conveyors of the FESTO CP Factory. Because
MiR100 is smaller than the Neobotix platform used in the LH1 through LH3, the
tabletop is also smaller. This led to the issue that it would not be possible to fit two

8.1. Prototype and Construction 55

PCB trays on the tabletop. The placement of UR5 posed a problem that it was not
easy for LH6 to reach inside the assembly module and reach the PCB tray, because
of UR5’s physical limitations. Finally, the mounting on MiR100 would be difficult
to make since the screws would have had to be mounted directly into the legs of
the frame. In Figure 8.3 the first CAD model is shown.

Figure 8.3: First CAD model of LH6.

8.1.3 Second CAD Model

Because of the difficulties faced in the first CAD iteration of LH6, a new CAD
model was made from scratch. This iteration has extended bottom frames, thus
the mountings are now put into the bottom frames and not into the legs. This
also created an opportunity to make the tabletop larger and thus make space to
fit two PCB trays. Although all prior LH’s have the manipulator in the back, LH6
now has it in the front right corner. This design makes it easier for LH6 to reach
the tray in the assembly module. The iteration also has a reworked UR5 platform.
The first iteration had the raised platform filling the whole back. The new design
has square shape and is big enough to fit the base of UR5, thus the most tabletop
space is maintained. The alloy profiles to support the tabletop was changed from a
40x40 mm to a 40x80 mm to offer better support and add a possibility of mounting
accessories on the sides, e.g. a Kinect camera. In Figure 8.4 the second CAD
iteration is shown along with an exploded view of the frame.

56 Chapter 8. Experiments and Results

(a) Second CAD iteration of LH6. (b) Exploded view of the frame with
UR5 stand.

Figure 8.4: Renders of LH6’s second CAD and exploded assembly.

8.2 TCP Communication Experiments

Setting up the TCP communication described in Section 7.3.2 was an iterative pro-
cess, consisting of three main iterations:

• Python TCP Server

• Integration into ROS Node

• Communication with SBS

Those iterations are separately described in this section with all their approaches
and test results.

In the setup used for all iterations, the computer, which is supposed to communi-
cate with PLC and run SBS with all the supplementary drivers, is connected via
Ethernet cable to PLC and through WiFi to LH6.

8.2.1 Python TCP Server

First stage of the TCP server’s development was to create it as a stand-alone pro-
gram and have it to communicate with the PLC program. It has been chosen to
write the server handler in Python, because Python by default offers modules con-
taining server/client handling classes, which simplifies deployment of a server,
especially if the request handling is expected to carry out a simple task, which is
the case of this project. The TCP server has been designed to listen for requests

8.2. TCP Communication Experiments 57

on a specific IP address and port. The connection and its stability was tested by
sending a single request from the PLC. A trial PLC program was made for this
purpose utilizing carriers and available peripherals inside the assembly module
(metal sensors and pneumatic carrier stoppers) in the following manner:

1. IF carrier reaches sensor at stopper THEN establish connection

2. Send message

3. Receive response

4. IF response is <specified condition> THEN let carrier through

During debugging, it has been discovered that separating receiving and sending in
the PLC program into two functions results in unexpected behaviour, i.e. after es-
tablishing connection, sending a message, and resetting, if it is desired to establish
connection again for reading purposes, the program gets stuck on the connection
part. This problem does not occur if the sending and receiving is present in the
same request, i.e.:

1. Establish connection

2. Send message

3. Wait until message was sent

4. Receive message

5. Reset connection

8.2.2 Integration into ROS Node

In the next stage, the working communication between the TCP server and PLC
needed to be extended to components of LH6 (MiR100, UR5, Robotiq 3-Finger) via
SBS. Because of this goal, the TCP server was created as a new ROS node in the
LH6 workspace. After handling every single request, the server is able to read and
publish to dedicated topics, that can be used to pass changes in state variables to
SBS at a rate of 10 Hz.

A new PLC program was developed for the purpose of this project, which now
uses the newly connected relays, described in Section 7.3.1, to control the tray in
the following manner:

1. Wait for the tray

2. IF tray rolls out THEN call LH6

58 Chapter 8. Experiments and Results

3. IF received message is <specified condition> THEN reel tray back in

4. reset program

Note, that the PLC program also constantly sends and receives TCP signals during
each of the described steps.

8.2.3 Communication with SBS

Finally, SBS is required to interpret those signals in order to control the behaviour
of LH6. This is done by creating two new simple skills (or rather functionalities)
in SBS: Listening skill and Call skill. Those functionalities do not require any
teaching, since there are no online parameters to be obtained. When executed, the
Listening skill starts to constantly read from a topic, mapping the state of the tray.
The skill does not finish until the right value, which announces the ejected tray, is
read. The Call skill just simply publishes a value to a topic, made for LH6 state
check, upon execution. When the value is published, the TCP server reads it and
sends a TCP signal to the PLC, which after receiving the message reels the tray
back in.

Functionality of the communication was tested by a simple trial task, created
in SBS, which consisted of Listening skill, MoveTo skill, and Call skill. As ex-
pected, upon running the task the Listening skill started checking the specified
topic. When the tray was ejected, the Listening skill exited and the MoveTo skill
performed a movement pattern with UR5. After that, the Call skill was executed,
which was noticed by the tray autonomously going back into the assembly module.

This last test has proven that the developed communication system is ready for
deployment in the final test, where the part feeding is to be attempted.

8.3 3D Camera Calibration Experiment

This section describes the test of the LH6’s manipulator’s position before and after
calibration in order to investigate if a calibration is necessary.

8.3.1 Calibration vs. Initial Precision

In order to investigate the effect of using the calibration method, three tests are
created.

• Testing the precision of the LH6 without using camera calibration.

• Testing the precision of the LH6 using camera calibration (QR-code size =
183 mm).

8.3. 3D Camera Calibration Experiment 59

• Testing the precision of the LH6 using camera calibration (QR-code size =
267 mm).

The tests achieve to visualise and investigate the effect of using the calibration
method, over a non calibration, and furthermore, investigate which effect the size
of QR-code has on the calibration accuracy. The test description is listed in the
following description (Note that step 2 and 6 are only used in the tests using cali-
bration):

1. LH6 is driven to a position from where it can be calibrated (position 2, see
Figure 8.5a).

2. The QR calibration is done.

3. The UR5 is taught a position. The position is used a reference for the test (see
Figure 8.5a).

4. LH6 is driven to a new position (position 1, see Figure 8.5b).

5. LH6 drives back to position 2.

6. The QR-code calibration is done.

7. The UR5 moves to the taught position (see Figure 8.5a).

8. The error, measured as deviation in the hight and the width from the refer-
ence position is measured and noted.

9. LH6 drives to position 1.

10. Step 5, 6, 7, 8 and 9 are repeated 10 times for each test.

As illustrated in Figure 8.6, the two tests, obtained using calibration, have a sig-
nificantly lower error, than the non calibration test. The boxplots in Figure 8.6
illustrate that the error median for the non calibration test in the height is 22 mm
and the width 45 mm, where the median in the tests using calibration is respec-
tively 2 mm (QR size=183 mm) and 3 mm (QR size=264 mm) in height, and 1 mm
(QR size=183 mm) and 2 mm (QR size=268 mm) in the width. From this it can be
concluded that using the calibration method has a significant effect on the preci-
sion of UR5 and LH6’s ability to interact with the environment, and that by using
the method the accuracy tolerance of ±10.8 mm is fulfilled (see Section 4.1). Look-
ing at the non calibration test, it can be concluded that the precision of the MiR100
in general is too low to fulfil the accuracy tolerances. This indicates that in order
to solve the part feeding task, a calibration method is needed for LH6. Looking

60 Chapter 8. Experiments and Results

(a) Reference position. (b) 1:Position 1, 2:position 2.

Figure 8.5: Camera calibration test setup.

at the different sizes of QR-codes, it appears as if the size of QR-code does not
have a significant effect on the precision of the calibration. However, looking at
the boxplots in Figure 8.6, it seems that the precision of the QR-code with a size
of 183 mm has a tendency to have a marginally better precision than the QR-code
with a size of 264 mm.

8.4. MiR100 Driver 61

Figure 8.6: Boxplots illustrating the data obtained form the test. Note that the QR-code sizes are in
centimetres.

8.4 MiR100 Driver

The MiR100 driver used in this project was developed as an iterative process that
started with simple motions which later were upgraded or expanded to more com-

62 Chapter 8. Experiments and Results

plex motions such as Drive To capabilities. This section describes this process. The
final driver includes multiple functionalities, each of which were separated pro-
gram before being integrated.

8.4.1 Control with Arrow Keys

The very first program made to control MiR100, was done with the purpose of
being able to control the platform with the arrow keys on a keyboard. It was done
by using the Rosbridge to publish to a topic setting the command velocity when
an arrow key was pressed. Both linear and angular velocity could be set.

8.4.2 Drive to Position

The next iteration was to be able to drive to positions created with the out-of-the-
box interface MiR100 offers. This would create the opportunity to be able to drive
autonomously to any given position and is thus considered high priority for this
project. The first program to do this used the REST API on a port 8000 on the
MiR100. A Python library created by MiR100 was used to handle the requests to
and from MiR100. It turned out later that this method was out of date, and when
the MiR100 software was updated to the latest version it did no longer function.
Since the library was no longer fully functional, it was decided to move the Drive
To program to a newer REST API located on port 8080. This created certain is-
sues since there e.g. was not any ready-to-go library but only documentation of
how to add a new mission, action and parameter without any examples. Using the
Python request library, it was possible to request and post data to MiR100. In order
to create a drive to mission, first a mission has to be created. That mission has to
have, among other parameters, a GUID (globally unique ID). This GUID is used
to identify the mission when it has to be executed. One of the other parameters of
this mission is an action(s) which also has some parameters. In the case of Drive
To, these parameters are the name of the position MiR100 will drive to, the number
of retries that should be done if the path it finds is blocked and what the preci-
sion should be when arriving to the destination. When creating a drive to mission,
a series of GUIDs were created and posted to MiR100 in the appropriate order
at the appropriate address, in this case http://mir.com:8080/v1.0.0/missions.
This will create a mission at the URL http://mir.com:8080/v1.0.0/missions/

mission_guid. Now an action can be posted to the address http://mir.com:

8080/v1.0.0/missions/mission_guid/actions and is accessible at the URL http:

//mir.com:8080/v1.0.0/missions/mission_guid/actions/action_guid. An ex-
ample of how a mission can be created can be seen in Listing 8.1.

mission_guid = s t r (uuid . uuid1 ())

message = { " guid " : mission_guid ,

8.4. MiR100 Driver 63

"name" : s t r (" Taxa to " + position_name) ,
" d e s c r i p t i o n " : " Mission example " ,
" read_only " : 0 ,
" s e s s i o n _ i d " : None ,
" show_in_app " : 1 ,
" h i d e _ i n _ m i s s i o n l i s t " : 0 ,
" d e l e t e _ a f t e r _ f i n i s h " : 1 }

miss ion_url = ’ ht tp :// mir . com:8080/ v1 . 0 . 0 / missions ’

response = reques ts . post (mission_url ,
data= j son . dumps(message) ,
headers=headers)

Listing 8.1: Example of creating a mission with Python

Note, that it is possible to set whether the mission should be deleted after finishing.
This is convenient to avoid polluting the mission list with old missions. After
all these steps the mission is ready to be executed. This is done by sending a
post request to MiR100 containing the parameters (i.e. GUID), which specify the
mission to be executed. Listing 8.2 shows how this is done.

mission_queue_url = ’ ht tp :// mir . com:8080/ v1 . 0 . 0 / mission_queue ’

msg = { ’ mission ’ : mission_guid , ’ t a x i ’ : None }

response = reques ts . post (mission_queue_url ,
data= j son . dumps(msg) ,
headers=headers)

Listing 8.2: Example of adding a mission to the mission queue with Python

Once all this was implemented, MiR100 could successfully drive between positions.

8.4.3 Create Position

The end goal with the driver is to make it usable in SBS which creates a program
based on a teaching process. This means that the operator will physically move
the robot to a location and store it. Instead of storing these locations in SBS alone,
they can be stored on MiR100 and then referenced by SBS. The old REST API was
only able to move existing positions created with MiR100 software. Therefore the
process was to create a series of dummy positions that could be moved. This lim-
ited the amount of possible positions an operator could have and is thus not very
flexible. Instead also this program was moved to the newer REST API which was
capable of creating positions.

64 Chapter 8. Experiments and Results

By using the new REST API it was possible to create a GUID and then post it
to MiR100 along with other parameters (position name, coordinates, etc.) with the
request library. These new positions can also be seen on the MiR webpage and
MiR100 is able to reach them.

8.4.4 Integration Into a ROS Node

After all separate programs were tested successfully, they were put into a single
function and copied into the same document name: mir_driver.py. The new main
function creates a ROS node which creates a list of services as seen in Section 6.1.1.
Each of these services are linked to a callback function responsible for executing
the expected operation when a service is called. This could, for instance, be when
the mir_create_position service is called, the function that contains the code for
creating a position will be called.

8.4.5 SBS Mobile Platform

Since SBS does not have a simple way of communicating with a mobile platform,
it needed to be integrated. The way SBS handles communication with drivers for
manipulators and grippers is that it creates two motion primitive objects. One that
consists of almost purely virtual functions called the MotionPrimitiveBase and one
that inherits from this object. This allows them to be equal and the base object can
now contain all information in objects that inherits from it. By doing this for the
mobile platform as well, it is simple to add another mobile platform, like Neobotix,
by creating an object that inherits from the base object and filling out the member
functions. These member functions will then call the appropriate services from the
MiR100 driver in order to handle the communication.

8.4.6 Drive To Skill

The Drive To skill is implemented like all other skills. When it is selected in the
AddSkill window, it will set three offline user defined parameters and when it
is teaching it will save the position coordinates and create a position on MiR100.
When executing it will call the Drive To functionality of the MiR100 and drive to
the position. A simple joystick was also added to the teaching interface so the
operator could drive the mobile platform to a position before storing it.
To test if the Drive To skill worked, a small program was created in SBS. It con-
tained a Drive To skill and a simple Move To skill that moves the manipulator. The
Move To skill was added to ensure that the Drive To skill would not halt the pro-
gram and visually show that the manipulator would not move before the MiR100
stopped. When teaching it was apparent that the teaching interface was shifting

8.5. Final Test 65

downwards. This was due to some error when implementing the joystick. Due to
time constraints this error could not be fixed. Even though the interface shifted, it
was still possible to save the location, and when executing the program, MiR100
would drive to the taught position but the manipulator would also move. The
reason for this was the after the MiR100 driver had created the mission to drive to
the position and put it in the mission queue, it would then return and SBS would
continue executing the next skill in the list. The fix to this error was to implement
a loop that would block the MiR100 driver from returning until it had reached the
end position. After this implementation, the skill worked as expected.

8.5 Final Test

The final test is carried out with the goal of solving the task described in Section 5.
This section describes the test setup along with the results. Due to time limits the
test is carried out with success/fail criteria.
At the time of the test, all the parts for the LH6 had not yet arrived. Therefore the
test was carried out with the prototype (see Section 8.1). This serves as a proof of
concept until the final LH6 has been assembled.

8.5.1 Test Setup

The test is carried out as two sequences that happen chronologically. In the first se-
quence the tray is taken out and placed on the LH6’s table. In the second sequence
the tray is picked up from the table and put back into the assembly module. Since
the prototype does not have room enough for two trays on the table, the same tray
is placed and picked up. The two sequences can be set up in the following list:

Sequence 1:

1. Go to start position.

2. Wait for signal.

3. Go to assembly module.

4. Move the manipulator to a general startposition in front of the tray output.

5. Calibrate the position according to a QR-code.

6. The gripper places its thumb at the edge of the tray (see Figure 8.7a).

7. Pull the tray out half way by using the thumb of the gripper (see Figure 8.7b).

8. Grasp the tray and pull it all the way out (see Figure 8.7c).

66 Chapter 8. Experiments and Results

(a) Place thumb of gripper
on the tray.

(b) Pulling out the tray
halfway out.

(c) Grabbing the tray.

Figure 8.7: The process of pulling and grasping the tray.

9. Move the manipulator to be above the table of the LH.

10. Place the tray on the table (half way out the table side).

11. Push in the tray so it is placed at the center of the table.

Sequence 2:

12. Pull the tray half way off the table.

13. Grasp the tray and lift it off the table.

14. Move the manipulator to a general startposition in front of the tray input.

15. Calibrate the position according to a QR-code.

16. Put in the tray half way.

17. Push in the tray all the way.

18. Send signal to the assembly module that the tray has been replaced and the
tray will be rolled in.

19. Move the manipulator to a safe position.

As mentioned in Section 7.3.1 the assembly module automatically pushes the tray
out when it is empty. This is simulated in all tests by using the push button to pull
out the tray manually.
The process is taught using SBS and the Drive To skill. Since the process is an
advanced case of a pick and place it was hoped that the skills in SBS with the same
name would suffice in making the sequences. This turned out not to be the case as
they did not store enough via-points for the manipulator for either sequence to be
carried out efficiently. Ideally an application-oriented skill for both the pick and
place task would be created, but due to time limits, a series of MoveTo’s was used

8.5. Final Test 67

to create the program. Furthermore, the velocity in all MoveTo’s was set to 30%
of the maximum velocity, except when the tray was being put into the assembly
module where it was set to 10%.
When trying to grasp the tray, it was discovered that for the gripper to have a firm
grip around the tray, two of the PCB’s needed to be removed. There is, however no
PCB’s on the tray when performing the tests, to avoid them being damaged.

The process takes place on a map created with the MiR web-interface. SBS is
then used to teach the position. The map can be seen in Figure 8.8 along with the
start position and the assembly module position.

Figure 8.8: Map for replacing tray. 1) Start position, 2) Assembly module position, 3) QR-code, 4)
Tray input/output.

After teaching the two sequences the program was executed.

8.5.2 Test Results

The test is carried out 25 times and is graded with a success/fail. In total 5 param-
eters are measured:

1. Drive: LH6 can drive and reach its target location.

2. Calibrate: The manipulator will compensate for the offset created by the
mobile platform.

3. Grasp: The gripper can grasp the tray both when getting it from the assembly
module or when picking it up from the LH6 table without losing it.

68 Chapter 8. Experiments and Results

4. Receive Signal (RS): The LH6 will be notified when the tray has to be re-
placed.

5. Send Signal (SS): The LH6 will notify the assembly module when the tray
has been replaced.

Each of these parameters is evaluated with a success/fail. If all of them succeed,
the test run is considered successful. If one parameter failed the subsequent pa-
rameters is not be measured (i.e. when Drive fails it is not possible to put in the
tray). The velocity scaling of the execution was increased over the course of the
tests from 40% to 100% though this only affected the velocity of the manipulator
and not the mobile platform. Table 8.1 shows the recorded results.
From Table 8.1 it should be noted that after test run 10, two small boxes, marked
with green, was placed at the corner, marked with red, where the LH6 has its as-
sembly module location in Figure 8.9. It was believed that the corner was hard for
the mobile platform to see and thus resulted in it getting stuck in a loop of path
planning and driving (without actually moving). In total the Mobile platform was
the point of failure in 33.3% of the test runs (22.2% before adding the two boxes
and 11.1% after).

Figure 8.9: Updated test map.

As it also can be seen in Table 8.1 the driver for the PLC communication (both RS
and SS) is responsible for a large margin of the errors. In total those two account
for 67% of all the failed test runs.
The velocity did not have an impact on any of the parameters in the 25 test runs.

8.5. Final Test 69

Number Velocity(%) RS Drive Calibrate Grasp SS Total
1 40 3 3 3 3 3 Success
2 40 3 3 3 3 3 Success
3 40 7 - - - - Fail
4 40 3 3 3 3 3 Success
5 40 3 3 3 3 3 Success
6 40 3 3 3 3 3 Success
7 40 7 - - - - Fail
8 40 3 7 - - - Fail
9 40 3 7 - - - Fail
10 40 3 3 3 3 3 Success
11 40 3 3 3 3 3 Success
12 70 3 3 3 3 3 Success
13 100 7 - - - - Fail
14 100 3 3 3 3 3 Success
15 100 3 3 3 3 3 Success
16 100 3 3 3 3 3 Success
17 100 7 - - - - Fail
18 100 3 3 3 3 3 Success
19 100 3 3 3 3 3 Success
20 100 3 3 3 3 7 Fail
21 100 3 3 3 3 3 Success
22 100 3 7 - - - Fail
23 100 3 3 3 3 3 Success
24 100 3 3 3 3 7 Fail
25 100 3 3 3 3 3 Success
Fails - 4 3 0 0 2 9
Num. of measurements - 25 21 18 18 18 25
Fail rate(%) - 16 14.3 0 0 11.1 36

Table 8.1: Results from 25 test runs. Where 3 is a success, 7 is a fail and - is not recorded.
Note that the fail rate does not include if a parameter prior failed.

Chapter 9

Discussion

To determine stability and consistency of the final solution, the LH6 was tested on
its abillity to part feed the assembly module.

The tray exchange scenario was tested with a total of 25 attempts. 16 out of the 25
attempts were successful without any complications, which gives a raw estimated
success rate of 64%. However, 5 out of the 9 failed attempts were caused by a
discovered bug in the TCP driver, so it failed to pull in the tray if the SBS mis-
sion runs for a second time, i.e. the TCP driver and the PLC program needs to be
restarted after every execution of the mission. The remaining four failed tests were
caused by MiR100 encountering a navigation issue on the corner of the assembly
module. Three of those occurred in the first run, after which the two boxes were
placed in the environment. The second run was carried out with only one failure
of the MiR100’s navigation. It can be concluded that MiR100’s navigation system
is not perfect and placing of its via-points or design of surroundings can directly
influence MiR100’s success rate of the navigation task. If considering navigation
in the mentioned 25 trials, MiR100 was able to successfully reach the destination
in 21 of 25 cases (84%). The precision of handling the tray, was a concern, but
with the implemented QR-code camera calibration algorithm, the variance of the
tool’s position was within the position tolerance of ± 10.8 mm, and there did not
occur any error during part feeding in all the attempts were the manipulator got to
carry out its task. However, as mentioned before in Section 8.5.1, all the attempts
were executed with no PCB’s on the tray in order to avoid them being damaged.
The possible amount of PCB’s on the tray was reduced from 12 to 10, because the
gripper needed the space to have a firm grip. This means that the tray needs to be
replaced more often if it was integrated in an actual production line.

The reason for the LH6 deployment in the specified use case was to replace man-
ual part feeding of the FESTO CP Factory. During the final test LH6 was able to

71

72 Chapter 9. Discussion

carry out the exchange in approx. 125 seconds with speed scaling set to 0.3 for
most of the manipulator movements. It is not easy to quantify the necessary time
to carry out the same task by manual labour, since there are many randomized fac-
tors present (initial position, motivation, human factor, etc.), however, considering
the task alone, a human is believed to be faster or operate at the same speed even
if the velocity of the manipulators movements were increased. But this consider-
ation of the speed does not matter, since human operators have limited working
hours and scheduled breaks are needed. With more robust implementation the
LH6 would be able to operate consistently over extended amount of time, without
any supervision, even overnight, needing only breaks for recharging.

Using SBS for programming tasks in the final test proved that utilizing skills for
programming a task can be beneficial for user-friendliness, since it is possible to
efficiently program on a higher level (drive to, move, pick, place, etc.), rather than
creating the tasks using (low-level is this needed) commands (rotate joint(s)/rotate
wheel(s) this much). Although in the final test for controlling the manipulator,
only the MoveTo "skill" was used, which did not use SBS’s potential to its fullest.
It would be preferable to create an application-oriented skill tailored to the FESTO
CP Factory use case for increased user-friendliness.

In order to create and utilize the Drive To skill in SBS, the MiR100 driver, de-
scribed in Section 6.1.1, was used. In the given setup, the SBS and drivers run on a
given computer, which runs the ROS core, while MiR100 operates in its dedicated
ROS master. That is why the MiR100 driver utilizes Rosbridge and REST API com-
munication to access the topics and services of the MiR100. Later on it has been
discovered, that this could have been alternatively done by exporting environment
variable of MiR100’s ROS master to all terminal windows (similarly as described
in camera setup in Appendix B) and thus running SBS and all drivers on MiR100’s
ROS master. Although having this knowledge when creating the MiR100 driver
would not change anything, since this method would have certain disadvantages,
like complicated setup and, if exported for all newly opened terminal windows,
unavailability to run own ROS core on the computer. It has been utilized though
for running the QR-code calibration driver on an extra laptop, placed on the LH6
and connected to the ROS master of the main computer, for convenience, since the
computer running the calibration driver needs to be connected to the camera via
USB. Moreover, the computer that runs the TCP driver needs to be connected to
the PLC by Ethernet and also connected to the ROS master. In order to preserve
mobility, those two drivers were ran on two dedicated computers. In an ideal case,
all connections in the system would be wireless, which would allow all the drivers
and SBS to run on one computer.

Chapter 10

Future Work

For further development of LH6, there are several things that would be beneficial
to look into, which is a goal of this chapter.

This project focused on integration of the LH6 in only one of the three described
part feeding challenges at the FESTO CP Factory. For future development a broader
view could be looking into part feeding of all three parts. This could lead to several
design changes such as the gripper and frame design.

To expand the capability of the LH6, an adjustable frame height was discussed.
For this project it was discarded because of extra cost and only one part feeding
task was set to be solved, which is why it was decided upon to make a fixed height
frame. However, it would be a good feature to include since the concept of the
LH’s is to be flexible.

Since it is the first time the MiR100 is integrated in SBS, it first needed a driver
and implementation in SBS. Thus it was only the MiR100’s most important func-
tionalities for this project, that were utilised. In future it could be investigated,
if accessing MiR100’s ROS master, and thus assuming full control of the MiR100,
would be beneficial. This might give SBS the possibility to see how the MiR100 is
running while driving and interrupt it if needed. It might also provide the feature
of getting the signals from all the sensors and thus make a custom mapping if
desired.

It would be beneficial to place a 3D camera just below the tabletop or on top
of MiR100 pointing upwards. The reason behind this is, that at the moment, LH6
do not know how tall it is thus it does not see if it is driving under a table and the
frame hitting it. Furthermore, an RGB camera could be mounted on the gripper
in order to allow the possibility of inspection. This would not be possible in the

73

74 Chapter 10. Future Work

current setup, since the payload of UR5 would be surpassed.

For LH6 to work autonomously in a real factory environment, it is not a good
solution that a person has to plug it in and out of the power outlet. Instead it
would be suggested that a charging dock is bought. (MiR-ApS 2016b) This would
make LH6 able to autonomously move to and from the charging station and thus
require less interference from employees.

If it were to do the part feeding of all parts, it should communicate with the MES
instead. This would increase the flexibility by knowing what orders come through.
LH6 would also know how many parts it fed and thus could predict when the
different parts would run out and could therefore run more efficiently.

The final test was carried out with four tasks each containing several skills. Ideally
this would not be the case, instead the four tasks should be application-oriented
skills instead. These four skills could be:

1. Pick tray from assembly module.

2. Place tray on LH6.

3. Pick tray from LH6.

4. Place tray in assembly module.

In the case of skills 1 and 4, the movement of the manipulator is related to the
placement of the assembly module, thus it needs to contain a QR-code calibration
in the beginning of the skill’s execution. Likewise, skill 2 and 3 needs to have the
base of the manipulator set to default (0,0,0), so the movement is not done accord-
ing to the QR-code. All of the four skills, should also contain all the movements
to and from the tray including grasping and releasing it. Skill number 1 could
have built in the feature for listening for the signal from FESTO CP Factory, which,
when received, will make LH6 drive to the assembly module. While skill 4 should
send a signal to FESTO CP Factory, that it should reel the tray in.
Doing this instead of the four tasks, would comply with the concept of object-
centring and bring the programming level for the operator to a higher level of
abstraction.

Safety design was not the main focus of this project, however, carrying out a risk
assessment in the future would be recommended.

Chapter 11

Conclusion

The focus of this project was to automate the part feeding tasks of FESTO CP Fac-
tory specified in Section 2.2 by means of the AIMM called LH6. An analysis was
done in order to identify part feeding and LH6 integration challenges, as well as
investigate previous version of LH’s which provided inspiration for integration
challenges. The concept behind the SBS program was described, since it is used
as a framework for LH6 and other LH’s. The identified challenges and resources
resulted in the final problem statement: How can the part feeding tasks at the FESTO
CP Factory line be solved by utilizing an AIMM with SBS integration?. After identify-
ing the goal in a problem formulation, design requirements could be set up. As a
delimitation a specific part feeding challenge was selected to be solved. As a part
of the delimitation a list of final requirements was established. This list can be seen
in Table 11.1.

Requirement number 1 specifies the battery life of the LH6 design. This was not
met since the final prototype was not built. Requirements number 2 was inspired
by the other LH’s, although it was not tested. Number 3 was set because of the
limitations of the given hardware. It was vital to ensure that the created construc-
tion for LH6 and manipulated objects would comply these limits. The feeding
point at the chosen FESTO CP module has certain dimensional limitations, which
was identified as a challenge in case of imprecise positioning. This fact was the
reason for establishing requirement number 4. It was concluded that doing the
calibration test significantly improves the general precision, which then fulfils the
set precision requirement. Furthermore, the accuracy of tray handling in the final
test never caused a trial failure. Requirement number 5 was partly established by
given hardware, but also in order for LH6 not to waste its payload on a compressor
for a pneumatic gripper. Since LH6 did not receive a battery, requirement num-
ber 6 was not met as well. LH6 framework was chosen to be SBS, since it was

75

76 Chapter 11. Conclusion

Item Description Value Unit Success
1 Battery life 3.5 - 1 - 3.5 Hours 7

2 LH6 payload 20 kg ?
3 Manipulator payload 5 kg 3

4 Manipulator precision ±10.8 mm 3

5 Electric gripper - - 3

6 Common power source - - 7

7 Programmable in SBS - - 3

8 Drive Functionality - - 3

9 Common emergency buttons - - 7

10 Restrict manipulator movement
when mobile platform moves

- - 3

11 Restrict mobile platform movement
when manipulator moves

- - 3

12 Communication with FESTO CP
module PLC

- - 3

Table 11.1: Review of final requirements.

successfully integrated with previous LH’s. For the mobile platform a Drive func-
tionality was needed to be integrated since no such functionality was developed
for SBS, thus requirement number 8 was met. For safety purposes, requirement 9
was established, since it is desirable to have a common emergency button which
cuts power to all components included in LH6. In relation to requirements number
1 and 6, the final prototype was not built, thus the electric circuit was not made.
The mobile platform should not move while the manipulator is moving and vice
versa. This gave requirements number 10 and 11, which were met. Lastly to carry
out integration of LH6 with FESTO CP Factory a communication was needed to
be established so LH6 knows when it is necessary to carry out the part feeding
task. This has been specified as requirement number 12 and has been achieved by
creating a driver which allows exchange of TCP/IP signals.
For overview of the accomplished requirements, see Table 11.1.

With the developed prototype, it was possible to carry out the final test, described
in Section 8.5 with a fail rate of 36%, which was contributed to by navigation er-
rors and a communication bug. In relation to the final problem statement, results
of the test show that LH6 had difficulties navigating in the environment it was in-
tegrated in, however, the test showed that LH6 could potentially be used as AIMM
dedicated to part feeding in an Industry 4.0 environment.

Bibliography

Andersen, Rasmus S. et al. (2013). “Fast Calibration of Industrial Mobile Robots to
Workstations using QR Codes”. In:

Bøgh, Simon et al. (2008). “Fremtidens produktionsmedarbejder - udvikling af mo-
bilrobotten; "Lille Hjælper"”. MA thesis. Aalborg Univiversity.

Bøgh, Simon et al. (2012). Does your Robot have Skills? Tech. rep. Aalborg University.
url: http://vbn.aau.dk/files/69945674/ISR_2012_Paper_ID_1158_FINAL.
pdf.

Bonev, Ilian (2014). Should we fence the arms of Universal Robots? Control and Robotics
Laboratory. url: http://coro.etsmtl.ca/blog/?p=299.

Carøe, Christian, Mikkel Hvilshøj, and Casper Schou (2012). “Intuitive Program-
ming of AIMM Robot”. MA thesis. Aalborg University.

Cisco (2016). Quick Start Guide. url: http://www.cisco.com/c/dam/en/us/td/
docs/switches/lan/csbus/sd208/quick_start/guide/SD208QuickStart.pdf.

Corke, Peter (2013). Robotics, Vison and Control. Second. Springer.
Etzerodt, Rune, Morten Palmelund-Jensen, and Casper Abildgaard Pedersen (2013).

“Creation of an Autonomous Industrial Mobile Manipulator”. MA thesis. Aal-
borg University.

Kalpakjian, Serope and Steven R. Schmid (2014). Manufacturing Engineering and
Technology. Ed. by Esther Yap. 7th. Pearson.

Madsen, Ole (2016). “AAU Smart Production”. In:
MiR-ApS (2016a). MiR100: Data sheet. url: http://mobile-industrial-robots.

com/wp-content/uploads/2016/05/2016-11-11_MiR100-EN-11-20161.pdf.
— (2016b). MiR100 Docking Station – Data sheet. webpage. url: http://mobile-

industrial-robots.com/wp-content/uploads/2016/05/MiR100-Docking-

Station-EN-05-2016.pdf.
— (2016c). Technical Discription. Webpage. url: http : / / mobile - industrial -

robots.com/da/mir100/teknisk-materiale/.
Pedersen, Charlotte (2015). Fornem pris til fynsk robot. webpage. url: http://www.

fyens.dk/erhverv/Fornem-pris-til-fynsk-robot/artikel/2791820.
Pedersen, Mikkel Rath (2011). “Integration of the KUKA Light Weight Robot in a

mobile manipulator”. MA thesis. Aalborg University.

77

http://vbn.aau.dk/files/69945674/ISR_2012_Paper_ID_1158_FINAL.pdf
http://vbn.aau.dk/files/69945674/ISR_2012_Paper_ID_1158_FINAL.pdf
http://coro.etsmtl.ca/blog/?p=299
http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbus/sd208/quick_start/guide/SD208QuickStart.pdf
http://www.cisco.com/c/dam/en/us/td/docs/switches/lan/csbus/sd208/quick_start/guide/SD208QuickStart.pdf
http://mobile-industrial-robots.com/wp-content/uploads/2016/05/2016-11-11_MiR100-EN-11-20161.pdf
http://mobile-industrial-robots.com/wp-content/uploads/2016/05/2016-11-11_MiR100-EN-11-20161.pdf
http://mobile-industrial-robots.com/wp-content/uploads/2016/05/MiR100-Docking-Station-EN-05-2016.pdf
http://mobile-industrial-robots.com/wp-content/uploads/2016/05/MiR100-Docking-Station-EN-05-2016.pdf
http://mobile-industrial-robots.com/wp-content/uploads/2016/05/MiR100-Docking-Station-EN-05-2016.pdf
http://mobile-industrial-robots.com/da/mir100/teknisk-materiale/
http://mobile-industrial-robots.com/da/mir100/teknisk-materiale/
http://www.fyens.dk/erhverv/Fornem-pris-til-fynsk-robot/artikel/2791820
http://www.fyens.dk/erhverv/Fornem-pris-til-fynsk-robot/artikel/2791820

78 Bibliography

Pedersen, Mikkel Rath et al. (2016). “Robot skills for manufacturing: From concept
to industrial deployment”. In: Robotics and Computer-Integrated Manufacturing
37, pp. 282–291.

Robotics and Automation Group (2016). Home Page. Aalborg University. url: http:
//robotics-automation.aau.dk/.

Robotiq (2016a). ADAPTIVE ROBOT GRIPPER. Webpage. url: http://robotiq.
com/products/industrial-robot-hand/.

— (2016b). Robotiq 3-Finger Adaptive Gripper Specifications. url: http://robotiq.
com/wp-content/uploads/2014/08/Robotiq-3-Finger-Adaptive-Gripper-

Specifications-ES.pdf.
Rüssmann, Micheal et al. (2015). “Industrial 4.0 - The Future of Productivity and

Growth in Manufacturing Industries”. In: BCG. url: http://www.zvw.de/
media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf.

Universal-Robots-A/S (2016a). Ethernet Socket Communication via URScript. url:
https://www.universal- robots.com/how- tos- and- faqs/how- to/ur-

how-tos/ethernet-socket-communication-via-urscript-15678/.
— (2016b). UR5. url: https://www.universal-robots.com/media/1003684/ur5-

a-highly-flexible-robot-arm-big.png.
— (2016c). UR5 - Technical details. url: https://www.universal- robots.com/

media/1514597/101081_199901_ur5_technical_details_web_a4_art03_rls_

eng.pdf.
— (2016d). UR5 Technical specifications. url: https://www.universal-robots.com/

media/50588/ur5_en.pdf.

http://robotics-automation.aau.dk/
http://robotics-automation.aau.dk/
http://robotiq.com/products/industrial-robot-hand/
http://robotiq.com/products/industrial-robot-hand/
http://robotiq.com/wp-content/uploads/2014/08/Robotiq-3-Finger-Adaptive-Gripper-Specifications-ES.pdf
http://robotiq.com/wp-content/uploads/2014/08/Robotiq-3-Finger-Adaptive-Gripper-Specifications-ES.pdf
http://robotiq.com/wp-content/uploads/2014/08/Robotiq-3-Finger-Adaptive-Gripper-Specifications-ES.pdf
http://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf
http://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/ethernet-socket-communication-via-urscript-15678/
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/ethernet-socket-communication-via-urscript-15678/
https://www.universal-robots.com/media/1003684/ur5-a-highly-flexible-robot-arm-big.png
https://www.universal-robots.com/media/1003684/ur5-a-highly-flexible-robot-arm-big.png
https://www.universal-robots.com/media/1514597/101081_199901_ur5_technical_details_web_a4_art03_rls_eng.pdf
https://www.universal-robots.com/media/1514597/101081_199901_ur5_technical_details_web_a4_art03_rls_eng.pdf
https://www.universal-robots.com/media/1514597/101081_199901_ur5_technical_details_web_a4_art03_rls_eng.pdf
https://www.universal-robots.com/media/50588/ur5_en.pdf
https://www.universal-robots.com/media/50588/ur5_en.pdf

Appendix A

Budget

This appendix contains the detailed budget list for LH6. All prices are excluding
VAT (besides shipment fees) and is the price for the university. Prices marked with
a * is an estimated price.

Table A.1 shows the price paid for the frame including alloy profiles and other
parts. The alloy plates where machined at Aalborg University and thus is an esti-
mation.

Table A.2 lists the expenses for parts inside LH6. This includes an extra battery,
emergency button etc. It should be noted, that parts for the electric circuit did not
make it in time, thus the price is not available.

Table A.3, shows the price for the robots and the gripper. The price for the UR5
and Robotiq 3-Finger gripper is from (Etzerodt, Palmelund-Jensen, and Pedersen
2013). The University got at a discount on the MiR100; the price of the MiR100 is
normally in the range of 180 000 DKK. (Pedersen 2015)

The full estimated budget list of LH6 is shown in Table A.4.

79

80 Appendix A. Budget

Item Describtion QTY Price
Profile 40x40 natur Alloy profile 2.10 m 355.40 DKK
Profile 40x80 natur Alloy profile 2.47 m 744.89 DKK
Profile 40x40 R90 natur Alloy profile rounded 2.51 m 398.66 DKK
Machining Machining of central fasteners 28 713.16 DKK
Cuts Cuts of alloy profiles 17 338.77 DKK
Drilling Drilling of mounting holes to

MiR100
4 117.24 DKK

Mounting angle 40x20x15 Mountings angle for acrylic
glass

8 291.30 DKK

Central Fastener S 28 724.29 DKK
Nut stone M5 Nut stone for mounting 32 193.20 DKK
Shipment Shipment by GLS 1 189 DKK
Acrylic Glass Acrylic glass in total 8 plates

with different cuts
1 945 DKK

Shipment Shipment by GLS 1 69 DKK
Alloy Plate Alloy plate 500x800x10 2 800 DKK*
Alloy Plate Alloy plate 200x200x10 1 400 DKK*
SUM 6 279.91DKK

Table A.1: Budget list for the frame.

Item Describtion QTY Price
Emergency Button Emergency button from Eaton 2 1 259 DKK
WICA Li-NMC 39Ah Battery Extra battery for MiR100 1 4 000 DKK
Kinect Camera Kinect Camera from ASUS 1 900 DKK*
Electrician Components Converters, circuit breaker ect. N/A N/A
SUM 6 159 DKK

Table A.2: Budget list for internal components.

Item Describtion QTY Price
MiR100 Mobile platform from MiR 1 180 000 DKK
UR5 Manipulator from UR 1 170 291 DKK
Robotiq 3-Finger Gripper Gripper from Robotiq 1 128 471 DKK
SUM 478 762 DKK

Table A.3: Budget list for robots and gripper.

81

Item Price
Frame 6 279.91 DKK
Internal Components 6 159 DKK
Robots 478 762 DKK
SUM 491 200.91 DKK

Table A.4: Summary budget list of LH6.

Appendix B

Setup Guide for Running SBS and
LH6

Before running SBS together with LH6 there are several programs and drivers
which needs to be started. This appendix consists of a guide explaining which
programs and drivers are needed in order to run SBS, together with LH6 and how
to start these drivers. To follow the guide, the folder found in the DropBox link
(https://www.dropbox.com/sh/easiqhiqohkqfq7/AABjUeWcLpskfj-iLzxyMaX-a?dl=
0 or in Figure B.1) and ROS indigo are expected to be installed.

In order to run SBS with LH6 the following software dependencies are required:

Figure B.1: Link to project repository.

1. Openni2_launch

2. Zbar

3. SBS

The following list, describe the different needed to set up LH6:

1. Turn on MiR100, UR5 and Robotiq 3-Finger

83

https://www.dropbox.com/sh/easiqhiqohkqfq7/AABjUeWcLpskfj-iLzxyMaX-a?dl=0
https://www.dropbox.com/sh/easiqhiqohkqfq7/AABjUeWcLpskfj-iLzxyMaX-a?dl=0

84 Appendix B. Setup Guide for Running SBS and LH6

2. Connect to the MiR100 WiFi and start roscore:
Connect the computer running SBS to the WiFi of MiR100.

3. Run the drivers for MiR100, UR5 and Robotiq 3-Finger:
To start the drivers execute the following commands in separate terminals:

• To execute the driver for MiR100 run:
rosrun mir mir_driver.py

• To execute the driver for UR5 run:
roslaunch ur_bringup ur5 _and_proxy_bringup.launch

• To execute the driver for Roboticq 3-Finger run the following into sepa-
rate terminals:
rosrun robotiq_s_model_control SModelTcpNode.py 192.168.12.123
rosrun rq3_proxy rq3_proxy_v3.py

4. Connect and setup the camera on the computer placed on LH6:

• Open a terminal and write the following(Here the IP address of the
computer running SBS is needed):
export ROS_MASTER_URI=http://192.168.12.xx:11311

• Connect to the camera and run the following in the same terminal:
rosrun openni2_launch openni2.launch

• Open a new teminal and run the following again:
export ROS_MASTER_URI=http://192.168.12.xx:11311

• In the same terminal run:
rosrun QR_pose QR_pose.py

5. Establish communication with the assembly module :

• Connect to the computer running SBS with the assembly module through
Ethernet, while still being connected to MiR100 WiFi.

• Run the communication TCP driver:
rosrun tcp_driver plc_communicate.py

• Run the PLC program on the assembly module.

6. Run SBS :
Run the following:
rosrun Skill_based_system SBS -r LH6

To execute the SBS without running the drivers run the following:
rosrun Skill_based_system SBS -r SIM

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Project Background
	1.2 Little Helper
	1.3 Industry 4.0
	1.3.1 FESTO Cyper-physical Factory

	1.4 Initial Problem Statement

	2 Challenges and Integration Proposals
	2.1 Part Feeding Challenges
	2.2 FESTO CP Factory Use Case
	2.3 Previous Little Helpers
	2.4 Integration Challenges
	2.4.1 Assembly of LH6 Components
	2.4.2 Battery
	2.4.3 Communication
	2.4.4 Mapping and Navigation
	2.4.5 Safety
	2.4.6 Part Feeding
	2.4.7 User-Friendliness

	2.5 Skill Based System
	2.5.1 Tasks
	2.5.2 Skills
	2.5.3 Device Primitives
	2.5.4 Concept of SBS

	3 Problem Formulation
	3.1 Solution Proposal

	4 Requirements Specifications
	4.1 Design Requirements
	4.1.1 Software
	4.1.2 Hardware
	4.1.3 Safety
	4.1.4 Operation

	4.2 Delimitations
	4.2.1 Final Requirements

	5 Solution Proposal for Delimited Case
	6 LH6 Architecture
	6.1 Mobile platform - MiR100
	6.1.1 MiR100 Driver

	6.2 Manipulator - UR5
	6.3 Gripper - Robotiq 3-Finger
	6.4 Design of LH6 Mounting
	6.5 Sensor - 3D Camera Calibration
	6.6 Network and Electric Circuit of LH6
	6.6.1 Network Setup
	6.6.2 Electric Circuit

	7 Integration
	7.1 SBS Integration of DriveTo Skill
	7.2 SBS Integration of 3D Camera Calibration
	7.3 Integration with FESTO CP Factory
	7.3.1 Part Feeding Automation
	7.3.2 PLC-LH6 Communication

	7.4 Summary

	8 Experiments and Results
	8.1 Prototype and Construction
	8.1.1 Early Prototype of LH6
	8.1.2 First CAD Model
	8.1.3 Second CAD Model

	8.2 TCP Communication Experiments
	8.2.1 Python TCP Server
	8.2.2 Integration into ROS Node
	8.2.3 Communication with SBS

	8.3 3D Camera Calibration Experiment
	8.3.1 Calibration vs. Initial Precision

	8.4 MiR100 Driver
	8.4.1 Control with Arrow Keys
	8.4.2 Drive to Position
	8.4.3 Create Position
	8.4.4 Integration Into a ROS Node
	8.4.5 SBS Mobile Platform
	8.4.6 Drive To Skill

	8.5 Final Test
	8.5.1 Test Setup
	8.5.2 Test Results

	9 Discussion
	10 Future Work
	11 Conclusion
	Bibliography
	A Budget
	B Setup Guide for Running SBS and LH6

